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Abstract. For action recognition, the actor(s) and the tools they use as
well as their motion are of central importance. In this paper, we propose
separating foreground items of an action from the background on the
basis of motion cues. As a consequence, separate descriptors can be de-
fined for the foreground regions, while combined foreground-background
descriptors still capture the context of an action. Also a low-dimensional
global camera motion descriptor can be computed. Poselet activations in
the foreground area indicate the actor and its pose. We propose track-
ing these poselets to obtain detailed motion features of the actor. Ex-
periments on the Hollywood2 dataset show that foreground-background
separation and the poselet motion features lead to consistently favorable
results, both relative to the baseline and in comparison to the current
state-of-the-art.

1 Introduction

All actions involve an actor and in most cases the actor must move to perform
the action. Surprisingly, these facts have not been used much in the literature on
action recognition. State-of-the-art works rather rely on global feature aggrega-
tion that do not make explicit use of the notion of an actor [2–6]. Exceptions are
Ullah et al. [7], who run a person detector to find persons, and Prest et al. [8],
who even try to detect action specific objects, such as cups and cigarettes. Wang
et. al. [6] also use a person detector but it is only used to improve their video
stabilization method.

In static action classification, the important role of the actor is more appreci-
ated, which is reflected by the fact that in the Pascal VOC Action Classification
challenge, the bounding box of the actor is already provided [9]. In the 2012 chal-
lenge, a task was offered, where only the coarse location of the actor is provided,
but there was not any submission on this task.

In this paper, we advocate focusing on foreground items of an action, which
includes especially the actor. In contrast to Ullah et al. [7] and Prest et al. [8],
who suggested finding the actor and other persons in the video directly with a
person detector, we propose to first detect the foreground items based on motion
before running poselet detectors [12] to localize the (relevant) actor(s) in these
foreground areas. While there has been much progress on person detectors in
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Fig. 1. Foreground scores are computed from sparse point trajectories (left). The in-
tensities of the red pixels reflect the soft foreground scores. From these we can compute
dense saliency maps (right).

Fig. 2. Motion based foreground detection for some videos of the Hollywood2
dataset [1]. Foreground objects are marked with red pixels. Features computed specif-
ically on the foreground help action classification.

recent years [10–12], person detection is still error prone. Here we exploit the
fact that the actor usually has to move to perform an action, i.e., motion in-
dicates the relevance of a person detection for the action. Motion cues enable
separation of moving foreground objects from the background quite reliably, as
demonstrated in [13]. Admittedly, there are cases, where items of an action and
even the main actor itself are static. However, such failure cases are quite rare,
and they are outnumbered by those cases where current person detectors fail.
Hence, compared to [7], we achieve much better performance. We also compare
to [14], where an eye tracking system was used to emphasize the part of the
image that humans consider most important. Although this approach uses ad-
ditional supervision, we obtain higher performance with the proposed motion
based saliency.

In the foreground we collect poselet activations for two reasons. First, pose-
lets indicate which parts of the foreground are indeed persons. As the examples
in Fig. 2 and Fig. 7 show, the foreground in an action dataset consists mostly
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Foreground detection

Poselet motion histograms

Sequence of poselet activations
”Move up” ”Move right”

Fig. 3. Illustration of the proposed poselet motion features: we detect poselets [12] in
the foreground and describe their motions over time. Thus, we encode pose information
as well as the movement of specific body parts into our feature representation.

of persons, but it can contain also a car that enters the scene and stops be-
fore a person (the real actor) gets out. Second, poselets are not just person
detectors but each poselet type indicates a specific body part and pose. Already
static poselet activations help classify actions, as shown in [15, 16]. Here we pro-
pose motion histograms accumulated for each poselet along its trajectory, which
makes a strong feature on how body parts move in a particular action; see the
illustration in Fig. 3.

In general, having separate foreground features is advantageous since many
actions are mostly independent of the scene background. For instance, the action
”Answer Phone” may occur in multiple settings: indoors, while riding a car, or
outdoors in a park. In all those cases the background holds only very little
information about the action class, while foreground objects (persons holding a
phone) are the main indicators.

On the other hand, there is correlation between the action and the back-
ground. Therefore, the strategy here is to have descriptors specific to the fore-
ground additionally to joint descriptors that can capture the context. The same
is true for motion compensation, as used in [4–6]. While it is advantageous to
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A Trajectory aligned features from Wang et al. [3]

B A on motion compensated trajectories

C A only on foreground

D B only on foreground

E Global camera motion histogram

F Global foreground motion histogram

G Poselet motion features [12]

Table 1. Overview of all features used in our action recognition approach.

define separate descriptors for motion compensated videos to be invariant to
the camera motion, there is much correlation between certain actions and the
camera motion. Rather than the ignorance of such correlation, we advocate the
separation into correlated and non-correlated descriptors. For this reason, we
also propose a very low-dimensional descriptor that explicitly represents the
camera motion, which is a by-product of the foreground separation. Table 1
gives an overview of the overall feature combination. We show that this leads to
state-of-the-art results on the challenging Hollywood2 dataset [1].

2 Motion Based Foreground Separation

In this section we aim for separating the actor and other moving objects that
may be involved in the action from the background. We assume that for action
recognition the most relevant parts of an image are those that show independent
motion, i.e., the segmentation comes down to a special type of motion segmenta-
tion. The foreground separation allows us to define features that are independent
of the background.

Previously, [5, 6] have used video stabilization by computing a global ho-
mography and subtracting it from the motion vectors. The main motivation for
such motion compensation is the improved invariance of motion features to the
camera motion. For this reason, we also use video stabilization when we com-
pute motion features. However, motion compensation also allows for a rough
foreground/background separation because, under good conditions, background
trajectories become static. In [5, 6] a simple thresholding of the motion magni-
tude after stabilization was used to emphasize foreground objects. In Figure 4
we illustrate that this procedure oftentimes does not lead to a clean foreground
separation.

The method we propose is based on clustering dense trajectories, which are
computed using the LDOF-tracker from [17]. In contrast to [13], we are inter-
ested in exactly two clusters (foreground and background) and we model the
background with a rigid 3D motion model. First, we compute a foreground score
for each trajectory and then use a standard spatio-temporal minimum cut to
obtain a segmentation.
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Fig. 4. Background feature pruning based on video stabilization versus foreground
saliency maps. Top row: Sample input sequence. Middle row, left: Optical flow.
Middle row, center: Optical flow after motion compensation. Middle row, right:

Foreground saliency map computed with our approach. Bottom row, left: Case with-
out camera motion compensation keeps all feature points. Middle: The camera motion
has been compensated and features on static trajectories have been pruned [5, 6]. Due
to the remaining residual motion many features in the background are not pruned.
Right: The proposed foreground saliency maps are based on a much more accurate
motion model and include the long-term aspect of motion. The foreground separation
is much cleaner.

2.1 Foreground Scores

Foreground scores are computed by comparing each trajectory to a background
motion model that is estimated with a factorization approach [18, 19]. This mo-
tion model explores the assumption that under orthogonal projections the back-
ground motion can be described by three trajectories. A projection matrix Pτ is
constructed from trajectorieswi = [xT

1,i, ...,x
T

F,i] ∈ R
2F , where xt,i = (xt,i, yt,i)

T

are the spatial positions of the tracked points at time t, and F is the size of a
temporal window centered at time τ [19]:

Pτ = W3(W
T

3 W3)
−1WT

3 . (1)

The matrix W3 = [wT

i w
T

j w
T

k ] holds the three trajectories wi, wj and wk, which
describe the background motion hypothesis. The likelihood that a trajectory w

is compatible with this hypothesis is measured by the projection distance:

fτ (w|W3) = ‖Pτw −w‖2 (2)

The background motion is found using RANSAC. Motion hypotheses are scored
by computing the projection errors for all trajectories and selecting the 25%
quantile as a score.
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Trajectories

Sliding Window

τ τ + L

Fig. 5. Illustration of the sliding temporal window approach: only those trajectories
that cover the temporal window completely are considered.

Once a background model has been estimated, the projected distance of a
trajectory is converted into a foreground score:

sτ (w) = exp

(

−
fτ (w|W3)

2σ2

0

)

, (3)

where σ0 is the average distance over all trajectories. Small sτ indicate tra-
jectories that do not fit to the background model. Thus we use 1 − sτ as the
foreground score and sτ as the background score.

The above approach assumes that all trajectories have the same length. In
practice this is not the case due to occlusion. Hence, we run the approach in
sliding temporal windows of size L = 6. In each window we only consider those
trajectories that fully cover that window; see Figure 5. Since most of the LDOF-
trajectories are much longer than the window size, they typically receive multiple
scores, one from each window they cover. We assign the maximum foreground
score (and equivalently the minimum background score) as the overall score for
a trajectory:

s(w) = min
τ

sτ (w). (4)

2.2 Binary Segmentation and Foreground Saliency Maps

We formulate the dense, binary segmentation as independent minimum cut prob-
lems on each frame. To ensure a labeling that is smooth in time, we build the
graph for a spatio-temporal volume around the frame of interest (size 5 in time)
and use a 26-neighborhood to connect the pixels in the volume. The unary term
is only defined for the pixels covered by a trajectory. For pixels i covered by
a trajectory w we have costs θi(0) = (1 − l(w)s(w)) and θi(1) = l(w)s(w),
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Fig. 6. Dense, binary segmentations are obtained from the sparse foreground scores
(red pixels in the left image) by solving a set of minimum cut problems with the
foreground scores as unary cost. The segmented image is then turned into a saliency
map by applying a Euclidean distance transform.

where l(w) is the length of the trajectory normalized to a range between 0 and
1. Longer trajectories are assigned a larger score to emphasize objects that are
visible for a longer time, since these are more likely to correspond to the actor
in the shot. The energy on the binary labels Xi

E(X) =
∑

i

θi(Xi)− κ
∑

i,j

δ(Xi, Xj) (5)

is minimized with the code from Kolmogorov [20]. δ is the 0-1 indicator function
and we set κ = 0.18. This parameter was optimized using grid search on a small
subset of the training set of the Hollywood2 [1] benchmark. Figure. 6 shows an
example of the final segmentation of the actor.

Since features in the area directly around the actor are often beneficial for ac-
tion recognition, we extend the foreground region to a saliency map by applying
a Euclidean distance transform; see Figure 7.

3 Poselet Motion Features

It has been shown by Jhuang et al. [21] that high-level pose information improves
action recognition performance significantly. Unfortunately, person detectors [12,
11] and pose estimators [22] are not yet reliable enough to provide fine-grained
information about the position of limbs and body parts on challenging action
datasets. For instance, person detectors have difficulties with poses that are
uncommon in static images but appear more often in videos. We experimented
with the person detector from Bourdev et al. [12] on a small set of action clips and
found that the detection scores decrease strongly when the pose changes from
standing to sitting. This problem can be approached by tracking detections over
time, i.e., scores from easy frames are propagated to more difficult ones.

Rather than relying on the functioning of a person detector, we consider the
statistics of the raw poselet activations in the foreground region. Restricting the
activations to the foreground ignores persons not involved in the action (as they
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Fig. 7. Soft saliency maps generated from our foreground segmentation on some sample
videos from the Hollywood2 benchmark [1]. The main actors are well covered by our
saliency maps and are clearly separated from the scene background.

do not move) but also false positive detections in the background; see Figure 8.
In contrast to a full person detector, the poselets also localize certain body parts
and their rough pose. It was demonstrated in [16] that the pose of a person can
be encoded by the poselet activation vector. This may not be accurate, but still
helps classify the action.

We are particularly interested in how the body parts described by the poselets
move. For instance, it can be expected that the head and torso have to move
upwards to perform the action ”stand up” and downwards to perform the action
”sit down”. We extract the motion of a poselet from LDOF-trajectories [17]. For
each poselet activation we consider all trajectories which are located inside the
predicted bounding box. For all activations of a certain poselet we aggregate the
motion vectors from an 8-frame time window in a motion histogram. A separate
motion histogram is computed from stabilized and non-stabilized motion vectors.
The histograms have 16 angular bins and two temporal bins. The latter allows
consideration of whether a certain motion pattern appears more at the beginning
or more at the end of a shot. Each motion vector votes with its magnitude for
the respective bins using bilinear interpolation. The aggregation area of the
temporal bins is deduced from the median length of the LDOF-trajectories.
This ensures that a motion sequence will not be disrupted as it might be the
case with evenly sized temporal bins. Since the video clips are in general very
short, we found that a higher temporal resolution does not provide any further
useful information. All motion histograms are normalized using the RootSIFT
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Fig. 8. Left: Poselet activations in three sample images. Green boxes show individual
poselet activations [12] in the foreground region. Red boxes show the detected persons
using [12]. Right: Foreground saliency maps. In all these examples, the main actor is
missed by the person detector. Increasing the detection threshold would also lead to
more false positives in the dataset. The motion based foreground saliency, on the other
hand, indicates the main actor correctly in most cases. The individual poselet activa-
tions in the foreground indicate specific body parts and poses. We use the histogram
over the motion of these poselets as features for classifying the action; see Fig. 9.

method [23]. Some poselet detections and the corresponding motion histograms
are shown in Figure 9.

We consider 150 poselets. For each we have two motion histograms (one
aggregated over the stabilized and one over the non-stabilized motion vectors)
and two temporal bins. Poselets that are not active in the first and/or second
part of a shot lead to a zero histogram. This means, the presence of a certain
body part and pose is implicitly part of the overall feature vector.

4 Descriptors and Classification

With the foreground saliency maps from Section 2 and the poselet motion fea-
tures from Section 3 we can define the descriptors as listed in Table 1. We build
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a) b) c) d)

Fig. 9. Left: Poselet motion histograms for two video shots and two different poselets
each. a+b: Histograms computed on non-stabilized motion vectors. c+d: Histograms
computed on stabilized motion vectors. The poselet motion histograms have two tem-
poral bins. a+c and b+d show the earlier and the later temporal bin, respectively.
Right: Some of the activations of each of these poselets.

upon the local descriptors introduced by Wang et al. [3]: trajectory aligned HOG,
HOF and MBH descriptors [10, 24], as well as normalized trajectory shape de-
scriptors. The descriptors can be seen as histograms that capture local image and
motion structure along a trajectory path of fixed length. They are aggregated
individually using the VLAD representation [25].

Based on the same methodology, we create additional VLAD features by
using motion compensated trajectories similar to [5], and by using the foreground
saliency maps. In the latter case, feature aggregation takes into account the
saliency scores as weights. Features located in the background have very small
or zero weights, which means they have hardly any influence.

We add the poselet motion features as described in Section 3. Moreover,
we suggest using two global histograms, which encode the camera motion and
the foreground motion. The camera motion histogram is aggregated over non-
stabilized trajectories in the background, while the foreground motion histogram
is computed from camera motion compensated trajectories in the foreground
region. The histograms capture the directions of the trajectory displacements in
the same way as for the poselet motion features. Each displacement vector votes
with its magnitude into one of the 16 angular bins of the histogram and there
are two temporal bins that cover the beginning and the end of the video clip.
The global motion feature vector has a total size of 64 dimensions. An example
is shown in Figure 10.
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Fig. 10. Camera motion and foreground motion histograms at the beginning and the
end of a video shot. Lines visualize the relative number of motion vectors pointing in a
certain direction, as comprised in the histogram bins. Despite the correlation between
camera motion and foreground motion, which is due to the camera following the actor,
there are clear differences between foreground and background motion. This is exploited
in our representation.

Hollywood2 mAP [1]

Marza lek et al. [1] 33.9%
Gilbert et. al. [26] 50.9%
Ullah et al. [7] 55.7%
Wang et al. [3] 58.3%
Jiang et al. [4] 60.3%
Vig et al. [14] 61.9%
Jain et al. [5] 62.5%
Oneaţă et al. [27] 63.3%
Wang et al. [6] 64.3%

Our method 67.8%

Table 2. Comparison of our results to the currently best results reported in literature.

All features are combined in the kernel function of a multi-channel SVM:

K(vi, vj) =
∑

c

h(vci , v
c
j), (6)

where vci and vcj are the individual features with respect to the c-th channel and
h(vci , v

c
j) computes the histogram intersection between vci and vcj . The SVM-

parameter C = 0.001 was selected based on cross-validation on the training set
of the Hollywood2 benchmark [1].

5 Experiments

We evaluated our action recognition approach using the Hollywood2 bench-
mark [1]. This benchmark consists of 1707 video clips collected from 69 movies.
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It is divided into a training set (823 clips) and a test set (884 clips). Both sets
were sampled from different movies. We increased the size of the training set
by mirroring the training video clips. There are 12 action classes: stand up,
sit down, sit up, run, get out of car, hand shake, eat, drive, kiss, hug, fight
and answer phone. Each action is evaluated by computing the average preci-
sion, and the mean average precision (mAP) is reported as overall result for the
benchmark. The Hollywood2 benchmark can be considered as a very challeng-
ing benchmark. Many video clips contain multiple shots and show frequent and
dynamic camera motion. Moreover, some of the actions have to be learned from
a very small number of training samples. To show that the approach works on
other datasets, we also evaluated it on the Olympic Sports dataset [28]. The per-
formance is 77.5% (without poselets) and 85.5% (with poselet motion features).
However, the Olympic Sports dataset [28] uses a very small test set (some ac-
tions are evaluated on only 3-4 video clips). This means that the overall score
for Olympic Sports can be strongly affected based on just a few test examples.
We therefore focus our detailed evaluation on the Hollywood2 benchmark where
classification results depend on a significantly larger test set. A comprehensive
overview of the plethora of different action recognition benchmarks can be found
in [29].

Table 2 shows that our approach outperforms all other methods reported in
literature so far. In particular, results are better than those of Ullah et al. [7],
who used a person detector, and Vig et al. [14], who built upon saliency from
an eye tracking system. A detailed analysis of the contribution of each set of
features is presented in Table 3. It reveals that already the foreground saliency
maps in conjunction with the global motion histograms compare favorably to
the current state-of-the-art by [6]. It also shows that separating the foreground
and background based on our saliency maps leads to much better results than
using just stabilized features.

The new poselet motion features increase the results even further, especially
the actions stand up, sit down, sit up, eat and kiss show a strong improvement
in performance while the other actions do not benefit. We assume that this is
because the performance of poselet detectors is mostly limited to certain body
parts, such as the head or shoulder. Some actions, e.g. hand shake, would require
strong poselets on hands and arms. Also, the vast majority of the 150 poselets
represents body parts seen from the front. Table 4 shows the performance of each
individual action with and without poselets. By using poselets only on action
classes where they improved performance on the validation set, the overall test
set performance can be improved further.

5.1 Computation Times

Computation times for a 576∗304 video with 144 frames on a single workstation
(purchased in the year 2009) are as follows: 288s for optical flow computation
and point tracking, 47s for the non-stabilized features by Wang et al. [3], 127s
including stabilization. Our contributions saliency map computation and poselet
motion features require 160s and 199s, respectively. The most computationally
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Hollywood2 Motion- Foreground- Foreground-
Action Class Stabilization Separation with Separation with

Saliency Maps Saliency Maps +
Poselet Motion

B (A-F) (A-G)

Stand Up 77.3% 79.2% 81.8%
Sit Down 76.6% 78.9% 80.3%

Sit Up 38.1% 44.2% 50.8%
Run 80.8% 85.3% 84.9%

Get out of Car 68.1% 68.8% 64.3%
Hand Shake 43.6% 48.4% 46.9%

Eat 60.2% 66.2% 69.1%
Drive Car 96.3% 97.2% 97.0%

Kiss 61.6% 68.2% 70.2%
Hug 37.6% 46.2% 45.8%
Fight 81.4% 81.1% 79.5%

Answer Phone 30.5% 35.8% 36.0%

mAP 62.7% 66.6% 67.2%

Table 3. Action recognition results for the Hollywood2 benchmark [1]. We report the
average precision (AP) for each action class and the mean average precision (mAP)
as overall score. An overview and description of the individual features named A-G is
given in Table 1.

expensive operations are: (1) LDOF computation, (2) running the poselets de-
tector, (3) running the RANSAC part of the background subtraction, (4) video
stabilization.

6 Conclusions

We have demonstrated that explicit separation of the video into foreground and
background and computation of separate features has positive effects on action
recognition performance. Since foreground detection with a person detector is
still erroneous, we have proposed a bottom-up approach based on point trajec-
tories. This is justified by the fact that most actions require the main actors (or
the relevant parts of them) to move relative to the background. The foreground-
background separation also allows us to define global, low-dimensional histograms
for the camera motion and the foreground motion. To include more detailed ev-
idence on the motion of the actor, we have proposed poselet motion features,
which indicate how a certain body part in a certain pose usually moves in a
certain action. These features strongly improve action recognition performance
when actors are seen from a frontal view. We conclude that this is an artifact of
the current poselet detectors and the poselet motion features will become even
more useful as body part detectors will improve. Even now our method sets the
state-of-the-art on the most challenging Hollywood2 dataset.
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Hollywood2 Validation Validation Use Poselet Score on
Action Class Score (A-F) Score (A-G) Motion Test Set

Stand Up 64.3% 66.5% Yes 81.8%
Sit Down 61.7% 68.5% Yes 80.3%

Sit Up 25.8% 27.9% Yes 50.8%
Run 93.3% 85.6% No 85.3%

Get out of Car 30.6% 21.8% No 68.8%
Hand Shake 43.3% 27.3% No 48.4%

Eat 39.5% 47.3% Yes 69.1%
Drive Car 89.1% 88.3% No 97.2%

Kiss 67.1% 62.7% No 68.2%
Hug 35.0% 34.8% No 46.2%
Fight 74.7% 70.8% No 81.1%

Answer Phone 28.1% 23.8% No 35.8%

mAP 67.8%

Table 4. Automatic selection of poselet motion features based on cross-validation: we
split the Hollywood2 training set randomly into 7 subsets. For each feature set (A-F
and A-G) we compute the mAP on the validation subsets and select the median as
final score. An overview and description of the individual features named A-G is given
in Table 1.
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