Corrections for "3d Images of Materials Structures – Processing and Analysis"

Joachim Ohser, Katja Schladitz

June 21, 2021

Chapter 3, Section 3.3.3, page 52, Fig. 3.4 and page 53, lines 1-2:

Figure 3.4c: the discretization $X \sqcap \mathbb{F}_{14.1}$

Analogously, for the set in Figure 3.4c we get $\#\mathcal{F}^0(X \sqcap \mathbb{F}_{14.1}) = 13$, $\#\mathcal{F}^1(X \sqcap \mathbb{F}_{14.1}) = 22$, $\#\mathcal{F}^2(X \sqcap \mathbb{F}_{14.1}) = 11$, $\#\mathcal{F}^3(X \sqcap \mathbb{F}_{14.1}) = 1$, and thus $\chi(X \sqcap \mathbb{F}_{14.1}) = 1$.

Chapter 3, Section 3.4.1, page 63, Table 3.6:

Figure	volume	$\widehat{\chi_V}$ [mm ⁻	3]		
	$[\mathrm{mm}^3]$	$(\mathbb{F}_6, \mathbb{F}_{26})$	$(\mathbb{F}_{14.1},\mathbb{F}_{14.1})$	$(\mathbb{F}_{14.2},\mathbb{F}_{14.2})$	$(\mathbb{F}_{26},\mathbb{F}_6)$
3.6a	63.778	9.7055	8.5766	7.9494	7.1968
3.6b	53.568	-253.771	-263.852	-273.149	-278.338

Chapter 4, Section 4.2.7.2, pages 114-115:

p. 114, l. 21, initialization of d: $d_i = 0$ if $b_i = 1$ and $d_i = \infty$ if $b_i = 0$

Algorithm 5.2.2 (two-pass recurrence):

- 1. Initialisation Initialise $d_i = 0$ if $b_i = 1$ and $d_i = \infty$ if $b_i = 0$ for i = 0, ..., m 1. Set d' = 0 $\kappa = 0$.
- 2. Forward scan for $\ell = 0, \dots, m-1$ do if $d_{\ell} = 0$ then d' = 0 and $\kappa = \ell$, if $d' + (\kappa - \ell)^2 < d_{\ell}$ then $d_{\ell} = d' + (\kappa - \ell)^2$.
- 3. Backward scan $\kappa = m 1$, for $\ell = m 1, \ldots, 0$ do if $d_{\ell} = 0$ then d' = 0 and $\kappa = \ell$, if $d' + (\kappa - \ell)^2 < d_{\ell}$ then $d_{\ell} = d' + (\kappa - \ell)^2$.

Algorithm 5.2.3 (3D):

- 1. Initialisation Initialise $d_{ijk} = \infty$ for $i, j, k = 0, \dots, m-1$.
- 2. *x*-direction For j, k = 0, ..., m 1 update the distances in each column in x-direction as $d_{ijk} = \min_{\ell} \{ (i \ell)^2 : b_{ljk} = 1, 0 \le \ell < m \}$ for all i = 0, ..., m 1.
- 3. *y*-direction For i, k = 0, ..., m 1 update the distances in each column in y-direction as $d_{ijk} = \min_{\ell} \{ d_{i\ell k} + (j \ell)^2 : 0 \le \ell < m \}$ for all j = 0, ..., m 1.
- 4. z-direction For i, j = 0, ..., m-1 update the distances in each column in z-direction as $d''_{ijk} = \min_{\ell} \{ d_{ij\ell} + (k-\ell)^2 : 0 \le \ell < m \}$ for all k = 0, ..., m-1.

Chapter 7, Section 7.6.2.2, page 261, line -8:

The value 0.124 is not the hard-core radius R_{hc} but the parameter $p_{hc} = \lambda_{hc}c/8$ with $c = 4/3\pi (2R_{hc})^3$ indicating the degree of regularity. It holds that $p_{hc} \leq \frac{1}{8}$. Thus the parameter is chosen close to its maximum. The corresponding hard-core radius is $R_{hc} = 0.3102$.

Section	page	line	is	should read		
Title		3	Material	Materials		
Preface	XIII	-7	, and Björn Wagner			
Chapter 2						
2.1.1	11	-8	$ x _{p} = (x_{1}^{2} + \dots + x_{p}^{2})^{\frac{1}{p}}$	$ x _{p} = (x_{1}^{p} + \dots + x_{r}^{p})^{\frac{1}{p}}$		
2.1.1	13	15	A set is called topologically closed			
			if $X = \overline{X}$.			
2.1.1	13	-10	there is an	there is an $\varepsilon > 0$ such that		
2.1.1	14	-9	convex ring, which consists of all	convex ring, which consists of all		
			finite unions of convex sets	finite unions of convex compact		
010	15	6	(a) (a)	sets		
2.1.2 2.1.2	15	0	$\kappa_1(s), \ldots, \kappa_{n-2}(s)$	$\kappa_1(s), \ldots, \kappa_{n-1}(s)$		
2.1.2 2.1.2	15	1	$\kappa_1(s), \ldots, \kappa_{n-2}(s)$	$\kappa_1(s), \ldots, \kappa_{n-1}(s)$		
2.1.2 2.1.2	10	-2	$\kappa_1(s)$ and $\kappa_1(s)$	$\kappa_1(s)$ and $\kappa_2(s)$		
2.1.0	11	1	tion	non-negative set function		
			$- (k)^k$	$- \langle , \rangle^d$		
2.1.3	17	-6, -5	$k > 0, \kappa_k \inf_{\sigma} \sum_i \left(\frac{a_i}{2}\right)$	$d > 0, \ \kappa_d \inf_{\sigma} \sum_i \left(\frac{a_i}{2}\right)$		
2.2.1	18	-12 to -10	$K_1 \cup K_1$	$K_1 \cup K_2$		
2.2.1	19	-9	morphologically closed	morphologically regular		
2.2.1	20	6	orthogonal space $^{\perp}L$ of L	orthogonal space $^{\perp}L$ of L with re-		
				spect to \mathbb{R}^k , span $(L, L) = \mathbb{R}^k$		
2.2.1	20	-4	largest distance	smallest distance		
2.2.2	21	12, 13	H_{n-2}	H_1		
2.2.2	21	-11	κ_{n-2}	κ_2		
2.2.4	24	-6	$X \in \mathscr{R}$	$X \in \mathcal{R}$		
2.2.4	24	-3	for $k = 0, \ldots, m$	for $k = 0,, n$		
2.2.5	25	-3	$X \oplus (Y+x)$	$X \cap (Y+x)$		
2.2.5	26	Eq. (2.16)	for $j = 0, \ldots, n$	for $j = 0, \ldots, k$		
2.3.1	27	15	$\{\mathcal{F}^G : G \in \mathcal{G}\}$	$\{\mathcal{F}_G:G\in\mathcal{G}\}$		
2.3.2	28	11, -3	Choquet capacity functional of fi-	Choquet capacity functional of		
			nite order	in finite order		
2.3.2	28	-6	on \mathcal{K} with $0 \leq T(K) \leq 1, K \in \mathcal{K}$	on \mathcal{C} with $0 \leq T(C) \leq 1, C \in \mathcal{C}$		
2.3.2	28	-4	$\mathbb{P}_{\Xi}(\mathcal{F}_K) = T(K) \text{ for all } K \in \mathcal{K}$	$\mathbb{P}_{\Xi}(\mathcal{F}_C) = T(C) \text{ for all } C \in \mathcal{C}$		
2.3.2	30	2	[317, p. 482]	[317, p. 428]		
2.3.3	31	6	supp	$\operatorname{supp} \Phi$		
2.3.3	33	Th. 2.4	$\sum_{x \in \mathbb{R}^n} \Phi(\{x\}) f(x)$	$\mathbb{E}\sum_{x \in \mathbb{R}^n} \Phi(\{x\}) f(x)$		
2.4.2	37	-7	$\hat{g}(\xi-a)$	$\hat{f}(\xi-a)$		

Table 1: Typos, wrong references and symbols, title to Chapter 2.

Section	page	line	is	should read
Chapter 3				
3.2.1	45	2	bcd	bcc
3.2.3	47	16	$\mu + 1 = 22$ congruence classes	$\nu_0 + 1 = 22$ congruence classes
3.3.1	49	-6	$\mathbb{F}_{2n} = \bigcup_{x \in \mathbb{L}^n} \bigcup_{j=0}^n \mathcal{F}^j(C+x)$	$\mathbb{F}_{2n} = \bigcup_{x \in \mathbb{L}^n} \bigcup_{j=0}^n \mathcal{F}^j(C+x) \cup \{\emptyset\}$
3.3.3	52	10, -11	Euler-Poincaré formula (3.4)	Euler-Poincaré formula (2.4)
Remark 3.2	53	6	$F_{12.1}$ and $F_{12.1}$	$\mathbb{F}_{12.1}$ and $\mathbb{F}_{12.2}$
3.4.1	62	3	$44.6\mathrm{mm}\times44.6\mathrm{mm}\times16.3\mathrm{mm}^3$	$44.6\mathrm{mm}\times44.6\mathrm{mm}\times16.3\mathrm{mm}$
3.6.2.3	75	24	edges	vertices

Table 2: Typos, wrong references and symbols, Chapter 3.

Section	page	line	is	should read		
Chapter 4						
4.1.1	79	(4.1), (4.2)	\int_{0}^{∞}	\int_{0}^{∞}		
				$\int -\infty$		
4.1.1	79	(4.2)	$\frac{1}{2\pi}$			
4.1.1	79	-1	$-2\pi i k \omega$	$2\pi i k \omega$		
4.1.3	81	-2, -1	upper summation bounds m_i	upper summation bounds $m_i - 1$		
4.2.1.1	84	13	$\{x \in \mathbb{R}^n : X \cap (Y+x) = \emptyset\}$	$\left\{ x \in \mathbb{R}^n : X \cap (Y+x) \neq \emptyset \right\}$		
4.2.1.1	84	-12	$(a+b)X = aX \oplus bX$	$(a + b)X = aX \oplus bX$ for convex		
4919	85	19	$X \cap \{y\} - X - y$	Sets X and $u, b \ge 0$ $X \cap \{y\} - X + y$		
4.2.1.2	86	6	$A \ominus \{y\} = A = y$ isst-touched objects	$A \ominus \{y\} = A + y$ iust-touching objects		
4.2.1.2	00	0	Just-touched objects	Just-touching objects		
4.2.1.3	88	13	$\chi(X) =$	$\chi(X) =$		
			$m \qquad m-1 m \qquad \sum (Y) = \sum (Y) = (Y)$	$m \qquad m-1 \qquad m$		
			$\sum_{i=1} \chi(X_i) - \sum_{i=1} \sum_{j=1} \chi(X_i \cap X_j)$	$\sum_{i=1} \chi(X_i) - \sum_{i=1} \sum_{j=i+1} \chi(X_i \cap X_j)$		
Table 4.1	91	caption	cube	rhombic dodecahedron		
4.2.1.8	92	-10	$X \circ Y \cap \left((W \ominus \check{W}) \ominus W \right)$	$X \circ Y \cap \left((W \ominus \check{Y}) \ominus Y \right)$		
Definition 4.6	94	14, 16	$x, y \in \mathbb{C}, y \in \mathbb{C}$	$x, y \in \mathbb{R}^n, y \in \mathbb{R}^n$		
Definition 4.6	94	14	ϕ on $L^1(\mathbb{R}^n)$	ϕ on $L^1(\mathbb{R}^n)$		
4.2.2	94	5	$f^*(x) = \overline{f'(x)}$	$f^*(x) = \overline{f(-x)}$		
4.2.2.2	99	13 and 14	directional gradient	directional derivative		
4.2.2.2	101	-9	operator	filter mask		
4.2.3	102	7	$\mathbb{1}_{X\oplus Y}(x) = \sup\{\mathbb{1}_X(x+y) : y \in$	$\mathbb{1}_{X\oplus Y}(x) = \sup\{\mathbb{1}_X(x-y) : y \in$		
			Y	Y		
4.2.3	102	13	$f^{Y}(x) = \sup\{f(x+y) : y \in Y\}$	$f^{Y}(x) = \sup\{f(x-y) : y \in Y\}$		
4.2.3	103	4	f^{Y} and f^{Y}	$f^{\check{Y}}$ and $f_{\check{Y}}$		
4.2.4	103	-2	monotone decreasing	monotone increasing		
4.2.4	104	1	quantity t_{α}	quantity $t_{Y\alpha}$		
4.2.5	106	-1	$\ \nabla f_0\ - a^2$	$\ \nabla f_0\ + a^2$		
4.2.5	107	22	covariance function $\Sigma = Dt$	covariance matrix $\Sigma = Dt$		
4.2.6.4	111	20	f serving as marker image and $f+$	f+h serving as marker image and		
			h as mask image	f as mask image		
Definition 4.9	131	4	F -path from x to y	F -path from x to y in Y		
Theorem 4.5	133	-9	Then S separates \mathbb{R}^n into two	Then S separates \mathbb{R}^n into two		
			connected sets, one compact and	connected sets, one bounded and		
4 9 9 9	194	1	the other one non-compact. $(\mathbb{R}^n \setminus V) \subseteq \mathbb{R}$	the other one unbounded. $(I,3)$ V \Box \overline{V}		
4.3.2.2	134		$(\mathbb{L}^n \setminus Y) \vdash \mathbb{F}_c$	$(\mathbb{L}^{S} \setminus Y) \vdash \mathbb{F}_{C}$		
4.3.2.2	134	4	surface rendering, see Section	surface rendering, see Section		
4323	135	14-15	the set $V = V$ of edges and the	the set $V = V$ of vertices and the		
1.0.2.0	100	1110	set $E = \{F \in \mathcal{F}^1(\mathbb{F}) : \mathcal{F}^0(F)\}$ of	set $E = \{F \in \mathcal{F}^1(\mathbb{F}) : \mathcal{F}^0(F) \subset$		
			vertices	Y of edges		
4.3.2.3	138ff	i-iii. v	indices ν are missing. e. g.	e. g. $label_{3,\mu_0} = label_{1,\mu_0-1}$		
		, ,	$label_{3,3} = label_{1,1-1}$	σ ···· σ,ν ₃ ·····,ν ₁ -1		

Table 3: Typos, wrong references and symbols, Chapter 4.

Section	page	line	is	should read	
Chapter 5					
5.2.2	152	-8	$V_{\perp L}$ is the $n - k$ -dimensional	$V_{\perp L}$ is the Lebesgue measure on	
			projection volume of X on $\perp L$	$^{\perp}L$ and $p_k(X,L)$ the $n - k$ -	
			counted with multiplicities	dimensional projection volume of	
				X on $\perp L$ counted with multiplici-	
				ties	
Table 5.2	160	7	$[299] \ [195] \ [368]$	[310] [202] [384]	
5.3	166	-7	extended Steiner formula (2.18)	special case (2.18) of the extended	
				Steiner formula [217, p. 632]	
5.3.1	167	(5.8)	$\xi_\ell, \ \xi_{\nu-\ell}$	$x + \xi_{\ell}, x + \xi_{\nu-\ell}$	
5.3.1	167	-11	$W \ominus C) \cap \mathbb{L}^n \neq \emptyset$	$(W \ominus C) \cap \mathbb{L}^n \neq \emptyset$	
5.3.1	167	-5	the estimation method given by	the estimation method given by	
			the left-hand side of (5.9)	(5.9)	
5.3.1	168	-9, -10	where the $b_{j\ell}$ are integers with	where the $b_{j\ell}$ are integers.	
			$\sum_{\ell=0}^{\nu} b_{j\ell} = 0 \text{ for } j = 1, \dots, \nu,$		
			what can be seen from the par-		
		10	ticular case $\Xi = \emptyset$.		
5.3.5	172	-13	considerably, reduced	considerably reduced	
5.3.5	173	-2	$\mathbb{E}\tilde{S}_V = \frac{2\pi}{a^2} \sum_{j=1}^{21} \bar{g}_j^{(2)} \mathbb{P}(\eta_j \subset \Xi^c)$	$\mathbb{E}\tilde{M}_V = \frac{2\pi}{a^2} \sum_{j=1}^{21} \bar{g}_j^{(2)} \mathbb{P}(\eta_j \subset \Xi^c)$	
536	177	13	j=0	j=0	
5.4	170	-10	macroscope	macroscopically homogeneous	
0.4	115	-0	macroscope	random set	
Remark 5.8	182	9	Ψ_{2}	$\Phi_{\rm p}$	
544	18 <u>-</u>	-18	$\lambda_1 = cr^2 c \gg 1$	$\lambda_1 = cr^2 c \gg 1$	
5.5.1	191	6	$\operatorname{vol}\left(\{x \in \mathbb{R}^n : \right.$	$\operatorname{vol}\left(\left\{x \in (W \ominus B_r) \cap \Psi\right\}\right)$	
0.0.1	101	Ũ	$(EDT_{\exists c} \mathbb{1}_{\Psi} \mathbb{1}_{W \cap B})(x) < r\})$	$EDT_{\exists c}(x) < r\})$	
Remark 5.12	192	3	F_{θ} of Ξ	F_{θ} of Ξ^{c}	
Remark 5.13	192	11	$G(r) = 1 - \frac{1 - V_V(\Xi \circ Y_r)}{1 - V_V(\Xi)}$	$G(r) = 1 - \frac{V_V(\Xi \circ Y_r)}{V_V(\Xi)}$	

Table 4: Typos, wrong references and symbols, Chapter 5.

Section	page	line	is	should read	
Chapter 6					
6.2	197	Fig. 6.1	window W .	window W , where c_W is the win-	
				dow function.	
6.2.1	197	-2	$\in \Xi$	$\subset \Xi$	
6.2.1	200	1	$\operatorname{Cov}(-dx)$	$\operatorname{Cov}(dx)$	
6.2.1	200	13	$\left\lfloor \frac{1}{2} - \left\lceil x \right\rceil - x \right\rfloor$	$\frac{1}{2} - \lceil x \rceil + x$	
6.4.1	213	5	$\bar{S}(X,A) = \frac{1}{2}\mathscr{H}^{n-1}(\partial X \cap A)$	$\bar{S}(X,A) = \mathscr{H}^{n-1}(\partial X \cap A)$	
6.4.3	220	(6.13)	\hat{c}_W	c_W	
6.4.3	220	-14	lim	lim	
Chapter 7			$\varepsilon \downarrow 0$	$\varepsilon \rightarrow \infty$	
Chapter 7					
7.2.2	235	15	$2\mathrm{e}^{-2w_nr^n}$	$\lambda e^{-\lambda \kappa_n r^{\alpha}}$	
7.2.3.2	238	8	$\exp(,)$	$\exp(lpha)$	
7.6.2	260	Def. 7.7	$C(x) = \{z \in \mathbb{R}^3 : z - x \le$	$C(x) = \{ z \in \mathbb{R}^3 : z - x \le$	
			$ z - y $ for all $y \neq x, y \in \varphi$ }	$ z - y $ for all $y \in \varphi$ }	
Table 7.4	269	-23	and the deduced estimates for the	and the deviation of the deduced	
			scaling factor k	estimates for the scaling factor	
				from the true $k = 0.0464$	
Table 7.4	269	-20	k_L, k_χ	$\hat{k}_L/k,\hat{k}_\chi/k$	

Table 5: Typos, wrong references and symbols, Chapters 6-8.

Acknowledgements

We thank colleagues and readers for pointing out errors. Particular thanks to Jiří Janáček, Institute of Physiology, Academy of Sciences of the Czech Republic, Lukas Hahn from Ulm University, Claudia Redenbach from the Technical University Kaiserslautern, and René Ciak from Fraunhofer ITWM.