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Abstract

Recent research implies that training and inference of deep
neural networks (DNN) can be computed with low precision
numerical representations of the training/test data, weights
and gradients without a general loss in accuracy. The ben-
efit of such compact representations is twofold: they allow
a significant reduction of the communication bottleneck in
distributed DNN training and faster neural network imple-
mentations on hardware accelerators like FPGAs. Several
quantization methods have been proposed to map the origi-
nal 32-bit floating point problem to low-bit representations.
While most related publications validate the proposed ap-
proach on a single DNN topology, it appears to be evident,
that the optimal choice of the quantization method and num-
ber of coding bits is topology dependent. To this end, there
is no general theory available, which would allow users to
derive the optimal quantization during the design of a DNN
topology.
In this paper, we present a quantization tool box for the Ten-
sorFlow framework. TensorQuant allows a transparent quan-
tization simulation of existing DNN topologies during train-
ing and inference. TensorQuant supports generic quantiza-
tion methods and allows experimental evaluation of the im-
pact of the quantization on single layers as well as on the full
topology. In a first series of experiments with TensorQuant
, we show an analysis of fix-point quantizations of popular
CNN topologies.

1 Introduction

Deep Neural Networks suffer from the big amount of data
which needs to be stored or transferred during training and
inference. The data is usually represented by floating point
numbers, because they are the most convenient to handle on
standard hardware. However, the required memory, energy
and achieved throughput of hardware depend approximately
linearly on the number of bits necessary to represent the data.
Several publications suggest that the floating point represen-
tation is taking more resources than it would be necessary to
successfully train networks and perform inference [9, 20].
There are two important use cases where smaller data repre-

Figure 1: Overview of the TensorQuant toolbox.

sentations are particularly interesting: The first one is custom
hardware such as FPGAs [8] and ASICs [11], where not only
data storage and transfer can be carried out in a customized
format, but also the computation. The second case is dis-
tributed systems [13, 7], where the communication between
the different nodes is becoming the main bottleneck. A cus-
tom data representation can largely reduce the amount of
data which needs to be communicated and thus reduce en-
ergy consumption and increase throughput.
A common approach to reduce the amount of data is quan-
tization, which is a mapping from a large, continuous or dis-
crete set of values to a discrete, smaller set.

1.1 Related Work

There are several quantization methods which can reduce the
amount of stored and transferred data in neural networks.
One common approach is to quantize the data with clus-
tering, which means confining the data representation to a
discrete set of values [9, 26, 6]. A special case of quantization
is the fixed point representation, where all numbers of the
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discrete set have the same distance to their two nearest
neighbours [17, 18, 7, 12]. Fixed point numbers are a very
popular representation in custom hardware like FPGAs and
ASICs. An extreme case of quantization are binary [3, 20]
and ternary quantization [16, 27]. Only one or two bits,
respectively, are used to represent a value. Although the
compression for the parameters is very high, these methods
need gradients represented in floating point while training.
There are various other methods like using the hashing trick
[1], logarithmic quantization [19], etc.
Among these methods, the fixed point representation has
gained attention because of the emergence of powerful cus-
tom hardware in datacenters, like Google’s Tensor Processing
Unit [11], Amazon Web Services’ F1 instances and Microsoft
Azure’s FPGA-based cloud services.
Many publications claim that the rounding, which inevitably
happens after every operation in custom hardware using the
fixed point format, can be modelled with a single rounding
step applied after a DNN layer has been computed in floating
point precision [12, 7, 18]. The argument in [18] is that the
quantization noise introduced after every rounding step can
be transformed into a single source of noise at the end of
the layer, since all operations are linear, if the activation
function is a rectifying linear unit (ReLU). In other words, it
does not matter at which point the noise level is increased,
thus rounding at the end is a sufficient approximation.

1.2 Contribution

In this paper, the question whether or not the quantization
noise introduced after each operation is close to a single quan-
tization step at the end of a layer is answered by directly sim-
ulating those two cases and comparing them with each other.
In addition to the location of the rounding, the rounding
method is also investigated. Even simple rounding methods,
such as nearest rounding and rounding down (defined in sec-
tion 2.1), have an impact on the network’s accuracy.
Quantization methods are often tested on simple datasets
and small topologies, which can be quickly trained and run,
such as LeNet and AlexNet with MNIST or CIFAR10. The
results from these experiments are generalized to bigger net-
works and datasets. Here, the results are directly obtained
from simulating big, state-of-the-art topologies, such as In-
ception V3 and ResNet 152 .
In order to investigate quantization in DNNs, a toolbox for
TensorFlow called TensorQuant is introduced1. The full spec-
trum of functions offered by TensorFlow can be utilized, aug-
mented with the ability to quantize each layer and to fully

1available at: https://github.com/cc-hpc-itwm/TensorQuant

emulate fixed point format data processing. Up until now,
there was no implementation which could emulate custom
size fixed point computation in a common neural network
simulation framework. In short, the main contributions are:

• A toolbox for TensorFlow , which can quantize the user’s
network using any user defined quantization method.

• Emulation of fixed point operations in addition to layer-
wise quantization.

• A systematic investigation of the impact of the rounding
location and method (the ”where” and ”how”) on the
DNN accuracy.

• A demonstration of the capabilities of the toolbox on
large, state-of-the-art networks.

This paper is structured as follows: Chapter 2 introduces
the used methods and terms. Extrinsic and intrinsic round-
ing are introduced and explained, which have a central role.
Chapter 3 presents the TensorQuant toolbox and explains its
features in detail. It gives an overview on how much effort
the user needs to put into applying the toolbox to his or her
own projects. The toolbox is used to investigate fixed point
quantization in chapter 4. Experiments are carried out on
large topologies such as Inception V3 and ResNet 152 .

2 Terms and Methods

2.1 Fixed Point Representation and Round-
ing:

A fixed point number (W,F ) is an integer with word size
W , where the F least significant bits are interpreted as the
fractional portion of the number. The word size or width W
is defined as the number of bits which are used to store a
single numerical value. Negative numbers are saved in two’s
complement, thus the range of a fixed point number (W,F )
is

[−2W−F−1, 2W−F−1 − 2−F ]. (1)

The resolution ∆ of the fixed point number is 2−F .
Converting a number from floating point representation to
fixed point causes loss in accuracy. If the original number
does not fit into the fixed point range determined by equa-
tion 1, the usual approach is to saturate the number, that is
to use the positive or negative marginal value, respectively.
The fractional part is chosen using a rounding method. Com-
monly known is nearest rounding

Qnearest(x) = sgn(x)b |x|
∆

+ 0.5c∆, (2)
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where the number x is rounded to the closest element in the
finite set of fixed point numbers with the resolution of ∆.
Another way is to round towards zero, that is to throw away
the fractional part of the number after the given resolution:

Qzero(x) = sgn(x)b |x|
∆
c∆. (3)

The easiest way to implement rounding in custom hardware
is down rounding

Qdown(x) = b x
∆
c∆, (4)

which cuts off the binary representation of the number after
as many bits as corresponds to ∆, regardless of the sign. For
example, if ∆ =0.25, the binary number is cut off after the
second fractional bit.
A rounding method which has been investigated often in lit-
erature is stochastic rounding [7, 17]

Qstochastic(x) =

 d x∆e∆ if x−bxc
∆ >= trandom

b x∆c∆ otherwise

, (5)

where the number x is rounded up or down depending on the
random, uniformly distributed threshold trandom ∈ [0, 1]. The
probability to be rounded towards either of the neighbouring
values increases with the proximity to that value.

2.2 Extrinsic, Intrinsic and Gradient Quan-
tization:

Figure 2: Overview of quantization types.

In order to handle the question of where the quantization is
applied to, as it was described in the introduction, the terms
”extrinsic” and ”intrinsic” quantization are introduced in this
paper (see figure 2 for an overview).

If quantization is applied at the end of a layer, it will be called
extrinsic quantization. This is the case where a layer is com-
puted in floating point precision, but the output is sent to
the next layer in a reduced data format. An extrinsic quan-
tization scenario can be encountered in a distributed system
with many computation nodes, where the data is processed
in floating-point precision within the nodes, but it is quan-
tized before it is sent to another node in order to reduce the
required bandwidth. For example, a convolution layer, which
performs the operation ~ between the input xin and the filter
K, would be formally represented as

xin ~K = Q(
∑
f

∑
k

∑
l

xin,f (i+ k, j + l)×Kf (k, l)), (6)

with Q the quantization function, f the number of features,
k and l the coordinates within the filter and i and j the co-
ordinates within a feature.
On the other hand, all intermediate results from every arith-
metic operation within a layer can be quantized. This sce-
nario can be found in custom hardware, where data is stored
and processed in the fixed point format, thus the data is re-
stricted to a certain precision at any point. Since this type of
quantization is applied on a deeper level compared to the ex-
trinsic one, it is called intrinsic quantization. A convolution
layer for example is formally computed as

xin~K = Q(
∑
f

∑
k

∑
l

Q(Q(xin,f (i+k, j+l))×Q(Kf (k, l)))).

(7)
Simulating intrinsic quantization needs more memory and
time then the extrinsic case. It is only reasonable to use
intrinsic quantization when trying to emulate the behaviour
of hardware. Fixed point quantization is the most reasonable
method to apply intrinsically, which is simply referred to as
rounding in this paper.
During training, the gradient can be quantized before the up-
date to the weights is applied [13]. Formally, this is can be
described with

wt+1 = wt + ηQ(∇L), (8)

with w the trained parameter at a time t, η the learning
rate and ∇L the gradient of the loss function, which is to be
minimized.

2.3 The Subunit Quantization Approach:

Intrinsic quantization can be unfeasible for big DNN topolo-
gies such as Inception V3 [22] and ResNet 152 [10], because it
requires too much memory to run. A method to mitigate this
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Listing 1: Fixed point quantizer code.

1 class FixedPointQuantizer(Quantizer_if ):
2 def __init__(self , fixed_size , fixed_prec ):
3 self.fixed_size=fixed_size
4 self.fixed_prec=fixed_prec
5 def quantize(self ,tensor ):
6 return quant_kernel(tensor ,self.fixed_size ,
7 self.fixed_prec)

problem is to apply rounding only to functional subunits of
the topology. A good example for subunits are the inception
modules occurring in the Inception type topologies. So
instead of rounding all layers at once, only a few are rounded
at the same time. There are good reasons justifying this
approach. First, the accuracy loss which happens at one
quantized layer cannot be regained in subsequent layers.
Second, it is very likely that the various layers require
different word sizes and fractional bits in order to keep the
accuracy at the baseline value. Therefore, there exists one
or several bottlenecks, which will determine the word size of
the entire topology.
All subunits of the topology are rounded one after another
and with different word sizes and fractional bits. The
accuracy of the inference is recorded for each run. For
each subunit, the best combination with the lowest word
size and the least fractional bits is determined, for which
the accuracy stays the same compared to the unquantized
topology. Amongst all the best combinations, the subunit
with the highest word size is identified as the bottleneck. If
there are several bottleneck subunits with the same word
size, the unit with the highest fractional bits is chosen as the
bottleneck.

3 The TensorQuant Toolbox

The TensorQuant toolbox is able to quantize any neural net-
work designed in TensorFlow intrinsically and extrinsically.
Some changes to the user’s original TensorFlow topology de-
scription file need to be made. Also, the user has to provide a
specification of which layers shall be quantized. TensorQuant
manages the quantization of the layers during the building
and running process. An overview of the different compo-
nents of TensorQuant is given in figure 1.

The Quantizers The core of the toolbox are the quan-
tizer objects, which carry out the quantization of the tensors.
Their simple interface takes a tensor and outputs the quan-
tized version. An example is given in listing 1. The Quantizer

Listing 2: Example topology file (original).

1 def lenet(images , ...):
2 ...
3 with tf.variable_scope(scope , ’LeNet’,
4 [images , num_classes], ...):
5 net = slim.conv2d(images , 32, [5, 5], scope=’conv1’)
6 net = slim.max_pool2d(net , [2, 2], 2, scope=’pool1’)
7 net = slim.conv2d(net , 64, [5, 5], scope=’conv2’)
8 ...
9 logits = slim.fully_connected(net , num_classes ,

10 activation_fn=None , scope=’fc4’)
11 ...
12 return logits , end_points

Listing 3: Example topology file (for quantization).

1 def lenet(images , ...,
2 conv2d=slim.conv2d , # added layer types
3 max_pool2d=slim.max_pool2d ,
4 fully_connected = slim.fully_connected ):
5 ...
6 with tf.variable_scope(scope , ’LeNet’,
7 [images , num_classes ] ,...):
8 # removed slim. before layer calls
9 net = conv2d(images , 32, [5, 5], scope=’conv1 ’)

10 net = max_pool2d(net , [2, 2], 2, scope=’pool1 ’)
11 net = conv2d(net , 64, [5, 5], scope=’conv2’)
12 ...
13 logits = fully_connected(net , num_classes ,
14 activation_fn=None , scope=’fc4’)
15 ...
16 return logits , end_points

interface forces a ”quantize” method, which invokes the quan-
tization kernel. The quantization process is carried out by the
kernel, which is written in C++. It is possible to write the
quantizers entirely in Python, although in the case of intrinsic
quantization, this utilizes prohibitively many resources.

Changes to the User’s Topology File Quantizers can
be applied to any node of the topology, but it would be very
laborious to assign them by hand. For the TensorFlow Slim
framework, a series of convenience functions is implemented
in TensorQuant , which automate the application of quantiz-
ers to the topology. An example of a file describing a topology
is given in listing 2. The changes to the topology file when
prepared for quantization are shown in listing 3.

Assigning Layers for Quantization The locations where
quantization is applied are controlled with the TensorFlow
variable namespaces. The user has to specify the entire vari-
able name for a single, or matching substrings for a set of lay-
ers where the quantization should be applied to. For example,
in listing 3 there is the variable scope ”LeNet”, which contains
the layers ”conv1”, ”pool1” and so on. The first convolution
layer can be accessed with the identifier ”LeNet/conv1”. All
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Listing 4: Pseudocode for layer factory.

1 def layer_factory(intrinsic_dictionary ,
2 extrinsic_dictionary ):
3 def func(*args ,** kwargs ):
4 current_layer=get_current_layer ()
5 if current_layer in intrinsic_dictionary:
6 kwargs[’quantizer ’]=
7 intrinsic_dictionary[current_layer]
8 net=quantized_conv (*args ,** kwargs)
9 else:

10 net=standard_conv (*args ,** kwargs)

12 if current_layer in extrinsic_dictionary:
13 return extrinsic_dictionary[current_layer ].
14 quantize(net)
15 else:
16 return net
17 return func

layers in the ”LeNet” scope can be accessed at once by the
identifier ”LeNet”.
The user specifies two dictionaries, one for intrinsic and one
for extrinsic rounding. The keys are the identifiers, and the
values are quantizer objects. The dictionaries are passed to
the layer factories.

The Layer Factories The layers are built by factory func-
tions. Each layer type has its own factory that returns a
function, which has the same interface as the standard Ten-
sorFlow layers. The factory takes two dictionaries as input
arguments, one for intrinsic and extrinsic quantization. The
pseudocode of a factory function is given in listing 4.

Implementation of Extrinsic and Intrinsic Quan-
tization Implementing extrinsic quantization is straight
forward, because the quantization is applied directly to the
layer output. The quantization is independent of what is
computed in the layer, thus it can be applied directly to all
layer types.
In the intrinsic case, however, there is no such straight
forward approach since the specific operation of the layer
needs to be considered. Unfortunately, there is no other way
than to re-implement the layer type, where quantization is
applied to the desired calculation steps.
The aim is to use the same quantizer objects as previously
shown in listing 1, thus no additional C++ kernels need
to be written. In the re-design, the standard TensorFlow
framework is used as much as possible. The downside is,
that a lot of intermediate results need to be stored in tensors,
which means an increase in required memory. To mitigate
this problem, the batch size can be reduced.
Adding extrinsic quantization to the model increases the
time to build the model by less than 2 % and the runtime

by 20 % (estimated on Inception V1 ). Intrinsic quantization
increases the build time by a factor of approximately × 70
and the runtime by × 20.

Some layers contain trained parameters, e.g. filter weights.
For a proper representation of fixed point operations, those
values are automatically quantized with the intrinsic quan-
tizer before passed to the calculation. Adding quantization
does not interfere with the TensorFlow namespaces. There-
fore, the model parameters can be loaded from save files
where the model was trained without quantization.
Extrinsic and gradient quantization are independent from
the TensorFlow version. Intrinsic quantization needs to re-
implement layers, therefore it can be incompatible to other
versions than 1.0 and 1.2.

Gradient Quantization The gradient quantization as
described in equation 8 is implemented easily. In the file
controlling the training, the gradients are intercepted and
the quantizer is applied, before they are passed to the
optimizer function.

4 Experiments

The TensorQuant toolbox is used to apply fixed point quan-
tization to DNNs. The simulations are focused on popular
CNN topologies, such as Inception V1 (GoogleNet) [21], In-
ception V3 [22], ResNet 50 and ResNet 152 [10]. The networks
are trained on ImageNet 2012 [4, 23]. For reference, we also
provide results for LeNet [15] with the MNIST dataset. In the
learning experiments, AlexNet [14] is trained on ImageNet.
The networks and trained parameters are taken from the Ten-
sorFlow model library[25], specifically the Slim GitHub web
page [24].
The main metric is the test accuracy. An unquantized version
of each topology serves as the baseline, to which all accuracies
are given to as relative values. About 1% of the validation set
is used for inference, simply to perform design space explo-
ration in reasonable time, especially in the case of intrinsic
quantization. Using a smaller validation set is valid, because
it is only interesting whether or not the baseline accuracy
is reached, plus quantization without any form of retraining
cannot improve accuracy.

4.1 Inference with Quantization

The following experiments perform inference on pre-trained
networks. The files with the pre-trained parameters are
downloaded from the Slim web page [24].
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4.1.1 Rounding Method

Figure 3: Zero, down, nearest and stochastic rounding
methods applied to the Inception V1 topology. Dots mark
the relative accuracy when the rounding is applied intrinsi-
cally and triangles mark the extrinsic rounding.

Figure 4: Rounding methods applied to the ResNet 50
topology, as in figure 3.

The influence of the different rounding methods intro-
duced in section 2.1 is investigated on the Inception V1 and
ResNet 50 topologies. Figures 3 and 4 show the relative
accuracy against the word width used for rounding. The
fractional bits are half of the word size. Intrinsic and ex-
trinsic rounding are plotted in the same figure with different
markers.
Extrinsic rounding is almost not affected by the rounding

Table 1: Comparison of rounding all layers at once (all)
against the subunit method (single). The entries are (relative
accuracy, fractional bits).

Topology 8 bit 12 bit 16 bit 20 bit

Inception V1 (all) 0.01, 4 0.99, 6 1.00, 8 1.00, 8
Inception V1 (single) 0.46, 2 1.00, 8 1.00, 8 1.00, 8

ResNet 50 (all) 0.00, 0 0.04, 6 0.91, 6 1.00, 10
ResNet 50 (single) 0.02, 2 0.54, 4 0.99, 6 1.00, 10

Table 2: Comparison of different topologies and word sizes
for intrinsic rounding. The entries are (relative accuracy, frac-
tional bits).

Topology 8 bit 10 bit 12 bit 14 bit 16 bit

Inception V1 0.46, 2 0.98, 5 1.00, 8 1.00, 9 1.00, 8
Inception V3 0.08, 2 0.92, 7 0.97, 6 0.99, 7 0.98, 6
ResNet 50 0.02, 2 0.14, 3 0.54, 4 0.93, 5 0.99, 6
ResNet 152 0.03, 2 0.16, 3 0.55, 4 0.95, 5 1.00, 6

method. The only deviation from the baseline accuracy is
coming from the word size. All rounding methods lead to
equally good accuracies.
For the intrinsic case, the choice of the rounding method
has an impact on the accuracy. Using down or stochastic
rounding in the Inception V1 topology doubles the required
word size compared to nearest rounding, whereas zero
rounding is between those. For the ResNet 50 topology,
nearest and zero rounding lead to similar accuracies, but
down ans stochastic rounding are still worse than the other
two methods.
Nearest rounding is the method which requires the least
amount of bits, therefore it is the best method of the
investigated ones. It is used in the following experiments.
Down and stochastic rounding, on the other hand, are the
most demanding methods.

4.1.2 Intrinsic vs. Extrinsic Rounding

For intrinsic rounding, the subunit approach explained in sec-
tion 2.3 is used. Table 1 compares the accuracies from round-
ing all layers at once against the subunit approach for Incep-
tion V1 and ResNet 50 . If the relative accuracy is very close
to 100 % in the subunit approach, then the method is equiv-
alent to rounding the entire network at once, as the results
are the same.
Intrinsic rounding is applied to DNN topologies in table 2.
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Table 3: Comparison of different topologies and word sizes
for extrinsic rounding, similar to table 2.

Topology 4 bit 6 bit 8 bit 10 bit 12 bit

Inception V1 0.32, 0 0.76, 2 0.98, 2 1.00, 4 1.00, 4
Inception V3 0.08, 0 0.93, 2 0.97, 2 0.99, 4 1.00, 6
ResNet 50 0.06, 0 0.62, 0 0.99, 2 1.00, 4 1.00, 4
ResNet 152 0.07, 0 0.55, 0 1.00, 2 1.00, 2 1.00, 2

Table 4: LeNet, Inception V1 and ResNet 50 rounded in-
trinsically for different word sizes. The entries are (word size,
fractional bits).

Topology 4 bit 8 bit 12 bit 16 bit 20 bit

LeNet 0.40, 3 0.90, 4 1.00, 6 1.00, 8 1.00, 8
Inception V1 - 0.01, 4 0.99, 6 1.00, 8 1.00, 8
ResNet 50 - 0.00, 0 0.04, 6 0.91, 6 1.00, 10

The word size is fixed in each column. The entries show
the maximum achievable relative accuracy and the used frac-
tional bits.
Inception type topologies require less word size than ResNet
type ones to achieve full benchmark accuracy. 12 bits are
enough for Inception, whereas ResNets need 16 bits. This is
a hint that the different topology types have different bot-
tlenecks, even though they use the same layer types. The
bottlenecks will be located later in section 4.1.3.
The conclusion from comparing the Inception and ResNet
type topologies amongst themselves is that the word size does
not depend on the depth of the topology. This can be at-
tributed to the batch normalization layers, which normalize
the activations before they leave a layer. The range of the
activation values is kept the same, therefore fixed point quan-
tization is working well.

The results from rounding the topologies extrinsically are
shown in table 3, which is structured as in the intrinsic case.
The subunit method is not needed here, because extrinsic
rounding does not require as much memory to run, therefore
all layers can be quantized at once without problems. Notice
that the word sizes in the columns are different. Extrinsic
rounding achieves baseline accuracy with less word size than
in the intrinsic case. 8 to 10 bits are already enough to stay
close to full accuracy, regardless of the topology type. Also,
the portion of fractional bits is lower than in the intrinsic
case, meaning the output values of the layers can be trans-
ferred in low precision.

Last, LeNet is compared to the Inception V1 and ResNet 50
topologies. All networks are quantized completely, so the sub-

unit method is not used. In table 4, the results are presented
as in table 2 before. However, LeNet was trained on MNIST
and the other topologies on ImageNet.
At 8 bits word width, LeNet achieves 90 % relative accuracy,
but the other topologies are close to zero. As from the pre-
vious results, ResNet 50 needs more word width than Incep-
tion V1 . This illustrates that even though all three topolo-
gies are CNNs and utilize the same layer types, results cannot
be generalized from one topology to another for the intrinsic
case.

4.1.3 Layerwise Intrinsic Rounding

After seeing the results from the subunit approach in table
2, the actual per subunit requirements regarding word size
and fractional bits are shown in the tables 5 and 6 for the
Inception V3 and ResNet 50 topology, respectively. Each
column represents a threshold for the relative accuracy. The
entries state the minimum required word size and fractional
bits to be above the threshold.

From this perspective, one can identify the bottleneck

Table 5: Subunits and relative accuracies for the Incep-
tion V3 topology. The entries show the required word size
and fractional bits to achieve the relative accuracy of the col-
umn.

Subunit 100% 99% 90%

Conv2d 1a 3x3 24,6 16,12 12,6
Conv2d 2a 3x3 16,6 12,6 8,2
Conv2d 2b 3x3 12,6 12,6 8,4
MaxPool 3a 3x3 8,4 8,4 8,0
Conv2d 3b 1x1 12,6 12,6 8,4
Conv2d 4a 3x3 8,4 8,4 8,4
MaxPool 5a 3x3 8,0 8,0 8,0
Mixed 5b 8,4 8,4 8,4
Mixed 5c 12,4 12,4 8,4
Mixed 5d 16,10 16,10 8,4
Mixed 6a 8,4 8,4 8,4
Mixed 6b 12,6 12,6 8,4
Mixed 6c 12,6 12,6 8,6
Mixed 6d 12,8 12,8 12,6
Mixed 6e 12,8 12,8 12,6
Mixed 7a 24,20 16,8 8,4
Mixed 7b 8,6 8,6 8,6
Mixed 7c 8,6 8,6 8,6
AuxLogits 8,0 8,0 8,0
PreLogits 8,0 8,0 8,0
Logits 12,4 12,4 12,4
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Table 6: Subunits and relative accuracies for the ResNet 50
topology, as in table 5.

Subunit 100% 99% 90%

resnet v1 50/conv1 20,8 16,6 16,6
block1 16,10 12,6 12,6
block2 16,10 12,6 12,6
block3 12,8 12,8 12,6
block4 16,10 16,8 12,6
logits 16,8 12,4 12,4

Table 7: Relative accuracy achieved for LeNet when the gra-
dient is quantized with different word sizes (W) and fractional
bits (F).

(W,F) 2,1 4,2 6,3 8,4 10,5 12,6

rel. accuracy 0.87 0.97 0.99 0.99 1.00 1.00

units and how demanding they are. Most units in both
Inception and ResNet topologies have the same requirement
of 12 bits word width and 6 bits fractional part, because
most of the layers within a subunit are convolution layers.
However, the bottleneck layers of the network determine the
required word width of the entire hardware architecture. The
very first layer needs a high word size in both topologies. In
Inception V3 , there are bottlenecks appearing in the middle
of table 5. There is no general rule that bottlenecks appear
at the beginning or the end of a topology.

4.2 Training with Quantization

For the case of distributed systems, it is more interesting to
see if and how well a topology can be trained when the gra-
dients, which are communicated between the computation
nodes, are quantized. As before, the quantization method is
fixed point with nearest rounding. The accuracies are rela-
tive to a network trained with exactly the same set up, but
without gradient quantization.
Table 7 shows the relative test accuracies for different word
size and fractional bits combinations for LeNet, and table 8
for AlexNet. The gradient can be quantized quite rigorously
in LeNet. Only 4 bits are sufficient to train LeNet to 97 % rel-
ative accuracy on the MNIST dataset. AlexNet, on the other
hand, needs at least 12 fractional bits to be trained to 92 %.
The comparison between the two topologies shows that there
is no point in generalizing results from simple topoligies like
LeNet to larger and deeper networks.

Table 8: Relative accuracy achieved for AlexNet when the
gradient is quantized with different word sizes, similar to table
7.

(W,F) 16,8 16,11 16,12 16,13 16,14 32,16

rel. accuracy 0.004 0.847 0.926 0.997 0.745 1.0

Figure 5: Training loss versus number of steps for gradient
quantization and the AlexNet topology.

An interesting observation can be made when looking at the
training loss for AlexNet. Figure 5 shows the training loss
against the number of steps for the AlexNet topology, trained
with the word sizes of table 8. The training loss is going up
after an initial phase of descend for 11 and 12 fractional bits.
Despite the training loss going up, the test accuracy is high.
The reason for that is that the used function for the training
loss comprises of the cross entropy and the L2-regularizer.
The quantization renders the L2-regularizer ineffective dur-
ing the computation of the gradient in case of low fractional
bits, so only the cross entropy is minimized. Since the weights
are not bound by the regularizer, their magnitudes can grow
freely. However, then the regularizer contributes a high value
to the overall training loss.

5 Discussion

A paper which has investigated the fixed point data format
with similar thoroughness is [12]. The most complex network
they investigated is Inception V1 . They suggest using at
most 14 bits word length with 2 bits fractional part. This re-
sult somewhat coincides with our findings for extrinsic round-
ing, where 10 bits word size and 4 fractional bits are sufficient

8



TensorQuant • Dominik Marek Loroch et al.

for that topology. The difference in the results could come
from the used framework and model parameters.
Designers of custom hardware have been using 16 bit word
size for implementations of their topologies [8, 5, 2]. Our re-
sults suggest to be careful, because there is no general word
size which guarantees to be sufficient for all topologies. But
for the investigated cases, 16 bit is large enough for all layers.
The results from the training coincide with [7], although they
used extrinsic rounding, instead. The fractional part needs
to be relatively high, whereas the integer part is not needed.
The increase of the training loss when using 16 bit nearest
rounding during training (figure 5) was also observed by [7],
despite using extrinsic quantization. In their paper, stochas-
tic rounding makes the training loss converge normally.

6 Conclusion

The TensorQuant toolbox allows to explore different quanti-
zation methods with the TensorFlow framework. The unique
feature is that the fixed point data format can be emulated
to the arithmetic level, thus allowing for the closest similarity
to custom hardware yet presented in any framework.
The most important result from the experiments is that in
the case of intrinsic rounding, the word size is more demand-
ing than it was previously thought. Intrinsic rounding is very
sensitive to the rounding method. It is not possible to gener-
alize the required word width from one topology to another,
as they have different bottleneck layers. The results from the
training section show that gradient quantization allows even
less to generalize between topologies.
It is planned to extend the TensorQuant toolbox much fur-
ther, especially the functionality related to training. The
goal is to fully emulate learning on a distributed system com-
prising of custom hardware, thus using the fixed point data
format. Other quantization methods will be implemented to
study possible strategies to reduce bandwidth in distributed
systems. Also, TensorQuant will be applied to other topolo-
gies like recurrent neural networks. It is expected that the re-
quirements regarding the data representation will differ from
CNNs.
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