Fraunhofer

ITWM

FRAUNHOFER INSTITUTE FOR INDUSTRIAL MATHEMATICS

PV-4D LIBSTREAM - WORLD RECORDS FOR CPU BASED STREAMING CODES

Fraunhofer-Institut für Techno-und Wirtschaftsmathematik ITWM

Fraunhofer-Platz 1
67663 Kaiserslautern
Germany

Contact
Dr. Franz-Josef Pfreundt
Phone +49 631 31600-4459
pfreundt@itwm.fraunhofer.de

Dr. Carsten Lojewski
Phone +49 631 31600-42 36
lojewski@itwm.fraunhofer.de
www.itwm.fraunhofer.de

PV-4D Libstream is a collection of micro kernels for current and next generation manycore CPU architectures. It is an essential building block for scalable parallel algorithms and applications on today's SMP systems.

Each functional logic is highly optimized and performs at the cutting edge of the hardware. This enables PV-4D Libstream to work at a new level of performance that is a magnitude higher than ever reported on CPUs and GPUs while still providing a simple and user-friendly API

Functional units

- sorting
- delaunay triangulation
- prefix scans
- marching cube
- geometry compiler (BVH, KDTree)
- concurrent vectors and queues (lock free)

PV-4D LIBSTREAM - WORLD RECORDS FOR CPU BASED STREAMING CODES

BVH Construction:
 Scene Fairy (174 k triangles)

"Simpler and Faster HLBVH with Work Queues"
K. Garanzha et al.: High Performance Graphics, August 2011

2D Delaunay Triangulation (2 M random points)

[1] Delaunay refinement algorithms for triangular mesh generation J. R. Shewchuk, Computational Geometry, May 2002
[2] Meng Qi et al.: Computing 2d constrained delaunay triangulation using GPU
I3D'12 Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games

Sorting 32 Bit Keys

[1] Merril et al.: Revisiting Sorting for GPGPU Stream Architectures PACT'10 Proceedings of the $19^{\text {th }}$ international conference on Parallel architectures and compilation techniques, pages 545-546

