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Zusammenfassung

In der vorliegenden Dissertation wird ein mathematisches Modell für die statistis-
che Analyse gruppierter Extremwerte präsentiert. Als gruppiert bezeichnet man
Datensätze, die nicht den exakten Ausgang eines Experimentes angeben, son-
dern lediglich die Häu�gkeiten widergeben, mit denen festgelegte Wertebereiche
oder Intervalle die Ergebnisse von unabhängigen Wiederholungen desselben Ex-
perimentes beinhalten. Insbesondere zeichnet das der Arbeit zugrunde liegende
Experiment extreme Werte auf. Datensätze aus verschiedenen Quellen basieren
dabei auf unterschiedlichen Beobachtungszeiträumen.
Ausgehend von der Extremwerttheorie und der üblichen Behandlung von Zähl-

daten werden parametrische Modelle für die Anzahl an Ereignissen pro Zeitein-
heit und Wertebereich entwickelt. Ein Hypothesentest wird präsentiert, der die
Annahme überprüft, diese Anzahl folge einer Poisson-Verteilung, und dabei mit
den unterschiedlichen Beobachtungszeiträumen umgehen kann. Die Überprü-
fung der Genauigkeit und der Güte dieses Tests ist Teil der Arbeit.
Die Modellparameter werden mit Hilfe der Maximum-Likelihood-Methode ge-

schätzt. Konsistenz und (asymptotische) E�zienz der Maximum-Likelihood-
Schätzer werden (in Teilen) analytisch und per Monte-Carlo-Simulation veri-
�ziert. Die asymptotische E�zienz wird zur Berechnung von Kon�denzinter-
vallen herangezogen. Es wird gezeigt, dass sich die Einteilung der Beobach-
tungsklassen optimieren lässt, und dass sich ein erheblicher Informationszuwachs
erzielen lässt, wenn zumindest der absolute Maximalwert, der sich theoretisch
aus dem Experiment ergibt, im Detail bekannt ist.
Das entwickelte Modell wird beispielhaft auf reale Daten aus der Automobilin-

dustrie angewendet.



Abstract

The present doctoral thesis presents a mathematical model for analyzing grouped
data based on extreme values. Grouped data means that the exact outcome of
the corresponding experiment is not known in detail, but only the occurrence
frequency of the outcomes within a particular range or interval is given. In
particular, the underlying experiment yields extreme values. In addition, the
independent realizations of this experiment are all based on di�erent observation
periods.
By dint of extreme value theory and the theory concerning count data, para-

metric models with regard to the number of events per time unit and domain
are developed. A hypothesis test is presented that checks out if this number of
events may be Poisson distributed, which cannot be done by standard methods
due to the di�erent observation periods. The veri�cation of accuracy and power
of this test is part of the thesis.
The model parameters are estimated via maximum likelihood method. It is

veri�ed (in part) analytically and by means of Monte Carlo simulations that
the maximum likelihood estimators are consistent and (asymptotically) e�cient.
Based on the asymptotic e�ciency, con�dence intervals are calculated. It is
shown that the partitioning of the observation range can be optimized, and that
a huge increase of information can be reached if the absolute maximum value
from the experiment is known in detail.
The developed model applies to real data from automotive industry.
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1. Preface

The present thesis is the result of my work at the Fraunhofer-Institut für Techno-
und Wirtschaftsmathematik1 ITWM in Kaiserslautern, Rhineland-Palatinate,
Germany, which cooperates with the Technische Universität Kaiserslautern2.
The initial motivation for this work came from a collaboration with the BMW 3

Group. The BMW Group is an internationally known German automobile, mo-
torcycle and engine manufacturing company headquartered in Munich, Bavaria,
Germany. With BMW, MINI and Rolls-Royce, the BMW Group owns three
premium brands in the automotive industry.
The task was, generally spoken, to extrapolate from a little image of reality to

the big picture. This is a common task for a mathematician and, particularly, a
statistician. In the present case, the �little image� were observations from a com-
plex measurement campaign. Due to technical and organizational restrictions,
the data were censored, grouped and strongly compacted. Following the quo-
tation �Por una pequeña muestra podemos juzgar la pieza entera4� from Miguel
de Cervantes [CS05], these data should be used to learn as much as possible
about the powers and forces that conceal behind the observations. However, full
knowledge about the �whole piece� cannot be achieved by the observations alone.
First of all, a theoretical model has to be established that wants to describe con-
ceptionally the hidden powers until the desired detail is achieved. The data are
secondary, even though they can give an idea of how to construct such a model.
When an adequate model has been found, the data are used mainly to adjust
the model to the reality � or to refute the model.
This thesis is structured exactly in accordance with this procedure. Chapter

2 describes in detail the BMW study on the basis which yields the motivation
for this thesis. The example of automotive engineering is used explicitly, but
it should be noted that there are many other sectors and situations in which
the results of this thesis may be applied. Some of these results can be con-
sidered separately from the described experiment since they yield solutions to
an abstract issue, e. g. the Poisson hypothesis test established in Section 3.5.
After motivation and problem statement, Chapter 2 lists some basic concepts
and terms from mathematical statistics and theory of probability which are used
throughout the thesis, e. g. estimators, cumulants, maximum likelihood method,
distributions and a short overview of extreme value theory.
1Fraunhofer Institute for Industrial Mathematics
2Technical University Kaiserslautern
3Bayerische Motoren Werke (Bavarian Motor Works)
4By a small sample we may judge the whole piece
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Chapter 3 presents the theoretical model which describes the real situation
pictured in Chapter 2 mathematically. It lists the assumptions and conditions
on which the model is based. In addition, the chapter suggests some parametric
approaches and gives criteria for selecting the adequate one. In some parts, the
criteria are generalizations of known mathematical concepts (see Section 3.5).
In other parts, some known concepts are adapted to the present situation (see
Section 3.6).
Since the model is based on a parametric approach, an estimation of these

model parameters becomes necessary. At this point, the available data come into
play. Chapter 4 prepares the framework for estimating the parameters. It de�nes
the appropriate statistical experiment(s) and speci�es some properties like Fisher
information and likelihood functions. Thereafter, for all necessary parameters
the maximum likelihood estimators are calculated, and the conditions are shown
under which these estimators exist.
Chapter 5 studies in detail the found maximum likelihood estimators. Monte

Carlo simulations show the behavior and some characteristics of these estimators,
e. g. asymptotic e�ciency. Moreover, algorithms are presented which can be
used in the numerical calculation of the estimators. The accuracy of the Poisson
hypothesis test from Section 3.5 under the null hypothesis and the power of this
test under several alternative hypotheses is also studied by dint of Monte Carlo
simulations. Finally, some real data from the BMW study are used to show how
to adjust the model by means of real observations. The presented procedure can
be used as standard evaluation when analyzing data which matches form and
structure of the BMW data.
The last regular chapter, Chapter 6, summarizes the results and gives a �nal

overview of the concepts of this thesis.
The appendix consists of three parts: Appendix A includes a few technical

lemmata. The results of these lemmata are used in some proofs, but they are
not relevant furthermore. Appendix B lists all the results from the Monte Carlo
studies which are made in connection with the accuracy of the hypothesis test
and the maximum likelihood estimators in Chapter 5. And Appendix C shows
some plots which illustrate the results of these Monte Carlo studies. Note, that
both the tables in Appendix B and the �gures in Appendix C refer in their
captions to the sections to which they belong. The explanations, descriptions
and analyses of the tables and �gures can be found in these sections.



2. Motivation, Problem Statement

and Methods

This chapter presents a full description of the problem statement that
provides the point of departure for this thesis. Section 2.1 introduces
supra operating load events (SOLE) and explains their role in auto-
motive development. Section 2.2 describes a measurement campaign
initialized by the BMW Group the results of which are analyzed
in this thesis. The goals of this analysis are explained in Section
2.3. Finally, Section 2.4 provides basics of mathematical statistics
and theory of probability which are used throughout this thesis to
achieve the goals formulated in Section 2.3.

2.1. SOLE � Supra Operating Load Event

Whenever automotive engineers design and construct a new motorcar they must
guarantee a certain durability for all of the vehicle's components. At the same
time it is necessary to avoid overdesigning the components, because oversizing
would result in increased vehicle weight and higher production costs.
To determine the required strength of a component, according to Zeichfüÿl

et al. [ZGKW08] all loads of a speci�c type which could act on this component
during the vehicle's lifetime are classi�ed into three categories �rst: operating
loads, special event loads and misuse loads. Operating loads are de�ned as
the load level that occur in the vehicle's day-to-day use. These loads must
be borne in accordance with the required life of the vehicle. Special events
are rare customer-relevant single events. Similar to operating loads they are
assigned to the intended use of the vehicle. Special event loads might be rather
high, but they must neither reduce the service life nor e�ect any degradation of
performance. Finally, misuse loads are accompanied by impairment, but they
must not constitute a security risk to the customer. Therefore, misuse loads
require a damage tolerant design.
As an example, consider the load quantity temperature, which is measured

on the brake disk. Under normal driving conditions the brake disk heats up
and cools down in a characteristic way. These are operating temperatures. A
special event could be an emergency braking as a result of an abruptly appearing
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barrier. Due to the hard braking, the brake disk is heated excessively. When
the driver applies the brake and full throttle simultaneously for a longer period
of time, he generates an misuse load. This misuse may result in defective brake
disks.
Other examples for load quantities are acceleration and the associated force.

Here, a special event could be crossing a speed bump or driving through a pot-
hole. In this context, misuse would be passing over a high pavement edge with
elevated speed.
According to Zeichfüÿl et al. [ZGKW08], the boundaries between operating

loads, special event loads and misuse loads are not clearly de�ned and the tran-
sition is �uid. Furthermore, the range of possible load magnitudes is not known
in every loading case. Environmental factors (e. g. rough roads, mountainous
landscape, winding roads, slippery streets, extreme external temperatures), the
vehicle parameters (e. g. vehicle mass, level of motorization, set of tires) and the
usage patterns of the driver (e. g. stressful and dynamic driving style) determine
upper load limits. Not least, the classi�cation as misuse or special event is the
driver's subjective decision.
However, both operating loads and special event loads (and, to some extend,

misuse loads) are important factors when constructing an automobile. As far as
operating loads are concerned, comparatively short measurements under typical
driving conditions produce enough data to derive target loads for component
testing. On the other hand, very little is known about frequency, severity and
other attributes of special events and misuse. Therefore, the resulting target
conditions for special event loads and misuse loads are usually worst-case ap-
proximations which can lead to a certain level of overdesign.
In this thesis, a model based on data is presented to analyze special events

and misuse. These two extreme load situations shall be grouped under the name
supra1 operating load events, brie�y: SOLE. This designation illustrates
that SOLEs are events creating loads which exceed operating loads.
The statistical model for analyzing SOLEs is based on data provided by a

study by the BMW Group as mentioned in the preface (see Chapter 1, Section
2.2).

2.2. Experimental Design

The gap of knowledge of SOLE's characteristics as described in Section 2.1 shall
be closed by a measurement campaign initialized by the BMW Group. All partic-
ipating test vehicles are used under customer conditions. Extra on-board sensors
record loads during day-to-day use which lay above a prede�ned threshold. This
threshold represents the assumed boundary between operating loads and supra

1Latin for above
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operating loads. In irregular intervals the test vehicles are called back to collect
the data.
The on-board data acquisition works as follows: When a maneuver in tra�c

generates a load that is greater than a particular threshold u (u ∈ R>0), the
associated value of the load is temporarily stored. Due to memory restrictions,
the load magnitude and the time series structure of a SOLE cannot be recorded
and saved exactly. In fact, the detection range R>u is partitioned into d intervals
(d ∈ N≥2),

(u, t1], (t1, t2], . . . , (td−1,∞)

with class limits u = t0 < t1 < . . . < td−1 < td = ∞. An algorithm realizes the
range the load magnitude lies within, and the counter of this class increases by
one. After that the exact value is deleted. The observation resulting from this
experiment is often called grouped data in data analysis [UC11].
Besides the classi�ed frequency of SOLEs only the magnitude of the maximum

load during the whole recording time is saved with an exact value.
The observation period is speci�ed in mileage, because SOLEs are incidents

in tra�c that only take place during vehicle motion. The number of kilometers
travelled since the last readout is also part of the data.
Thus, the observation per vehicle corresponds to the vector

(l, z1, . . . , zd, x),

where l ∈ N is the mileage of the car measured in integer numbers of kilometers,
zk ∈ N0 is the number of SOLEs with loads between the magnitudes tk−1 and
tk (k ∈ {1, . . . , d}), and x ∈ R>u is the maximum value of load. In particular,
the total number of SOLEs during the l kilometers, n =

∑d
k=1 zk, is contained

in the observation.

2.3. Main Goals and Approach

The aim of an automotive engineer is to �nd a construction for the vehicle with
an optimal cost-bene�t ratio, i. e. the car must resist a certain number of extreme
events, but considering the costs the components should not be overdesigned. To
�nd such an optimal cost-bene�t ratio an answer to the main question

What is the probability of observing z events with loads in the range
A during l kilometers?

is needed (z ∈ N0, A ⊆ R>u, l ∈ N). If this answer is found and, provided, the
capacity of the components is known, the (theoretical) durability of the vehicle
is predictable in probabilistic sense.
To illustrate this, let p(z,A, l) be the probability of observing z events in A

during l kilometers. Suppose the design limit of a speci�c component is the load
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magnitude a0 (a0 ∈ R>u). The probability that this limit is exceeded during
the vehicle's life time l0 is

∞∑
z=1

p(z,R≥a0 , l0) = 1− p(0,R≥a0 , l0).

Conversely, the minimum load magnitude that is not exceeded during the vehi-
cle's life time l0 with at least probability q (q ∈ (0, 1)) is

inf{a ∈ R>u | p(0,R≥a, l0) ≥ q}.

The expected lifetime can be found with the knowledge of p(z,A, l), too. The
highest mileage the vehicle can be used such that the design limit a0 is not
exceeded with at least probability q is

max{l ∈ N | p(0,R≥a0 , l) ≥ q}.

In the same way, many other questions can be derived from the main question
above.
The collection of data described in Section 2.2 shall help to learn all those

things about SOLEs. The analysis of this data shall yield an answer to the
main question above. A �rst naive attempt at an analysis of the collected data
could be studying the number of recorded SOLEs class by class. However, this
approach brings several di�culties:

� Distinct vehicles could have di�erent class limits and therefore di�erent
classes.

� Data of distinct vehicles cannot be compared directly to each other as the
mileage is di�erent.

� Approximately d parameters are needed.

� An extrapolation to classes without detected events is not possible.

� Statements can only be made about the given classes.

The last point is the most interesting one. Suppose that the class limits do
not depend on the vehicle number, d parameters are not too much to handle,
no class is empty, all mileages are the same (more or less), then the �rst four
points above are eliminated. But the last point still reveals that nothing can be
said about the expected number of SOLEs in the ranges R>td−1+x (x ∈ R>0)
or
[
t1 + t2−t1

3
, t2 − t2−t1

3

]
, for example. The predictability is limited to the

given classes. As mentioned above, the aim should however be to work out a
distribution of the number of SOLEs in an arbitrary range or interval.
Thus, the data must be analysed bottom up. A SOLE must be considered

as what it is: an occasion with a certain occurrence rate and an exact severity.
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The hidden information about these two characteristics must be gathered from
the histogram (z1, . . . , zd) of the number of SOLEs per class. In this way it
is possible to simulate a SOLE in detail. In Chapter 3 the knowledge of the
distributions of occurrence rate and severity is shown to be su�cient to determine
the probabilities p(z,A, l) from above, i. e. to answer the main question.

2.4. Methods

In this thesis methods of the modern theory of probability and mathematical
statistics are used to achieve the goals mentioned in Section 2.3. Some fun-
damentals of these theories are listed to guarantee a common comprehensibility
with respect to nomenclature and notation of mathematical terms. Furthermore,
a short overview of frequently used probabilistic methods is given including fun-
damentals of extreme value theory.

2.4.1. Characteristics of Random Variables

The following statement introduces some basic concepts from probability theory
like expectation, variance and index of dispersion of a random variable (de�ni-
tions are taken from [Eve02, UC11, Bau02, Ahm94, Als05]).

2.4.1 De�nition. Let X,Y be integrable random variables from the probabil-
ity space (Ω,A,P) to the measurable space (R,B). The expectation and the
variance of X as well as the covariance of X and Y are

E[X] :=

∫
R

x P(X ∈ dx) (expectation)

Var[X] :=E
[
(X − E[X])2] = E

[
X2]− E[X]2 (variance)

Cov[X,Y ] :=E[(X − E[X])(Y − E[Y ])] (covariance)

= E[XY ]− E[X]E[Y ]

If E[X] 6= 0, the index of dispersion and the coe�cient of variation of X
are

D[X] :=
Var[X]

E[X]
(index of dispersion)

CV[X] :=

√
Var[X]

E[X]
(coe�cient of variation)
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If the functions F and G are de�ned by

F : R→ [0, 1] : t 7−→ P(X ≤ t) ,

G : G → R : t 7−→ E
[
tX
]

with [−1, 1] ⊆ G ⊆ R, then F is the cumulative distribution function of X
and G is the probability-generating function of X.

2.4.2. Statistical Experiment and Likelihood Function

In the stochastic literature, e. g. [Als06, p. 3] and [Geo07, p. 196], a statistical
experiment or statistical model is de�ned as a triple (X,A, (Pϑ)ϑ∈Θ) with a
non-empty set X of possible observations called sample space, a σ-algebraA on X,
and a family (Pϑ)ϑ∈Θ of probability measures on (X,A) parameterized with the
elements of parameter space Θ. If X is a random variable from the measurable
space (Ω,A) to (X,A), and (Pϑ)ϑ∈Θ is a family of probability measures on (Ω,A)
such that for all ϑ ∈ Θ it holds

Pϑ(X ∈ A) = Pϑ(A) ∀A ∈ A,

or in a more common notation

Pϑ(X ∈ · ) = Pϑ,

then (X,A, (Pϑ)ϑ∈Θ) is called a statistical experiment based on observa-
tion X, and it can be written

(
X,A, (Pϑ(X ∈ · ))ϑ∈Θ

)
instead [Als06, p. 3].

Under these assumptions the likelihood function of X given observation
value x (x ∈ X) is de�ned by

L( · ;x) : Θ→ [0, 1] : ϑ 7−→

{
Pϑ(X = x) , if X is discrete,

fϑ(x), if X is continuous,

where fϑ denotes the probability density function of X under Pϑ [Als06, p. 3].
Furthermore, the log-likelihood function of X given observation value x
(x ∈ X) means the natural logarithm of the likelihood function,

`( · ;x) : Θ→ R : ϑ 7−→ log(L(ϑ;x)) .

2.4.3. Fisher Information and Unbiased, Consistent and
E�cient Estimators

Consider the statistical experiment
(
X,A, (Pϑ(X ∈ · ))ϑ∈Θ

)
with di�erentiable

log-likelihood function `. As long as the parameter space Θ is an open subset of
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Rn (n ∈ N), the term

I(ϑ) :=
(
Eϑ
[
∂
∂ϑi

`(ϑ;X) ∂
∂ϑj

`(ϑ;X)
])

1≤i,j≤n

is called Fisher information of X in ϑ = (ϑ1, . . . , ϑn) ∈ Θ [Als06, p. 60][LC98,
p. 115]. The Fisher information is a measure of how well the true parameter value
can be estimated. To reveal this, let X be a continuous random variable with
probability density function fϑ and let be n = 1. The term

∂`
∂ϑ

(ϑ;x) =
∂
∂ϑ
fϑ(x)

fϑ(x)

is the relative rate of how strong the density in x changes as function with respect
to ϑ. Especially, if ϑ0 is the true parameter, the lower the value of ∂`

∂ϑ
(ϑ0, x),

the less fϑ0(x) changes relatively as function with respect to ϑ, and the more
plausible an estimated value far away from ϑ0 becomes. Conversely, if the value
of ∂`

∂ϑ
(ϑ0, x) is high, only estimated values of ϑ near the true parameter ϑ0 appear

acceptable.
Besides this heuristic derivation there are some practical applications of the

Fisher information. For example, for n = 1 the information inequality [LC98,
pp. 120/127] states that under some regularity conditions an estimator ϑ̂ of ϑ
satis�es

Varϑ
[
ϑ̂(X)

]
≥

∂
∂ϑ

Eϑ
[
ϑ̂(X)

]
I(ϑ)

∀ϑ ∈ Θ.

In older works, this inequality is called Cramér-Rao inequality[LC98, p. 143].
According to this, the right-hand side of the inequality is called Cramér-Rao
lower bound.
An unbiased estimator ϑ̂ of ϑ, i. e. Eϑ

[
ϑ̂(X)

]
= ϑ for all ϑ ∈ Θ [LC98, p. 5],

which achieves equality on the information inequality,

Varϑ
[
ϑ̂(X)

]
=

1

I(ϑ)
∀ϑ ∈ Θ,

is denominated an e�cient estimator [Lin05, p. 77] (a more general de�nition
of e�ciency see [Bor99, p. 144]).
Furthermore, let X = (Xi)i∈N be a random series with statistically inde-

pendent and identically distributed Xi, let I1 be the Fisher information of X1

and let x = (xi)i∈N be a realization of X. Then, again under some regularity
conditions, any sequence

(
ϑ̂m(x)

)
m∈N of roots of the likelihood equation, i. e.

∂`
∂ϑ

(
ϑ̂m(x); (x)

)
= 0 for all m ∈ N, which is consistent, i. e. ϑ̂m(X)

P−−→ ϑ for
m→∞ [LC98, p. 54], satis�es√

mI1(ϑ)
(
ϑ̂m(X)− ϑ

)
d−−→ N (0, 1) for m→∞

(convergences each with respect to Pϑ) [LC98, p. 449]. Such an estimator is called
an asymptotically e�cient estimator [LC98, p. 439].
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2.4.4. Maximum Likelihood Method

The estimation method today known as maximum likelihood in its current
form was introduced and worked out by Ronald A. Fisher (see Aldrich [Ald97]
and Hald [Hal99] for an overview of the history of maximum likelihood). Max-
imum likelihood follows a simple strategy: assume that the observation is a
typical realization of the underlying experiment, then it is plausible to select
the one distribution from a speci�ed distribution family that yields the greatest
probability for the observed data.
More precisely, let

(
X,A, (Pϑ(X ∈ · ))ϑ∈Θ

)
be a statistical experiment based

on X. The distribution of the elements of X is known up to a parameter ϑ ∈ Θ.
The ambition is to �nd the true parameter that characterizes the distribution of
X. Given a realization x of X (x ∈ X) the maximum likelihood method chooses
the parameter(s) ϑ̂ ∈ Θ which maximizes the likelihood function given x,

ϑ̂(x) := arg max
ϑ∈Θ

L(ϑ;x) = arg max
ϑ∈Θ

`(ϑ;x).

If and only if the maximizer of the likelihood function exists and is unique, then
ϑ̂(x) is calledmaximum likelihood estimator of ϑ based on x [Als06, p. 23].
The maximum likelihood method is so common, because it is very versatile

in its application. In many situations the likelihood function has got a unique
maximum which is the only requirement for calculating the maximum likelihood
estimator. The method also manages censoring and truncation, and the observa-
tion does not need to be a realization of identically distributed random variables.
In many situations the maximum likelihood estimator is consistent [LC98, p. 445]
and (asymptotically) e�cient (see Section 2.4.3).

2.4.5. Distributions

Several speci�c distributions appear in this thesis. To avoid confusion, the fol-
lowing de�nition speci�es the required ones in detail. In addition, it lists some
important characteristics of them. The de�nitions and facts below are taken
from [JKK05, Con89, JKB94, KN00].

2.4.2 De�nition & Fact. Let X be a random variable on the probability space
(Ω,A,P).
1. X is binomially distributed with r trials and success probability q

(r ∈ N, q ∈ (0, 1)), in short X ∼ Bin(r, q), if and only if its support is {0, . . . , r}
and its probability mass function is

P(X = n) =

(
r

n

)
qn (1− q)r−n ∀n ∈ {0, . . . , r}.
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Then, expectation E, variance Var and probability-generating function G of X
are

E[X] = rq, Var[X] = rq(1− q) and G(t) = (1 + q(t− 1))r ∀t ∈ R.

2. X is Poisson distributed with mean λ (λ ∈ R>0), in short X ∼ Poi(λ),
if and only if its support is N0 and its probability mass function is

P(X = n) = e−λ
λn

n!
∀n ∈ N0.

Then, expectation E, variance Var and probability-generating function G of X
are

E[X] = λ, Var[X] = λ and G(t) = eλ(t−1) ∀t ∈ R.

3. X is negative binomially distributed with exponent % and mean µ
(%, µ ∈ R>0), in short X ∼ NBin(%, µ), if and only if its support is N0 and its
probability mass function is

P(X = n) =
Γ(%+ n)

n! Γ(%)

(
%

%+ µ

)%(
µ

%+ µ

)n
∀n ∈ N0

with gamma function Γ [AS65, p 255]. Then, expectation E, variance Var and
the probability-generating function G of X are

E[X] = µ, Var[X] = µ

(
1 +

µ

%

)
and G(t) =

(
%

%− µ(t− 1)

)%
for all t ∈

(
− %+µ

µ
, %+µ

µ

)
.

4. X is generalized Poisson distributed with parameters θ and λ (θ ∈ R>0,
λ ∈ [0, 1)), in short X ∼ GPoi(θ, λ), if and only if its support is N0 and its
probability mass function is

P(X = n) = e−θ−nλ
θ (θ + nλ)n−1

n!
∀n ∈ N0.

Then, expectation E, variance Var and probability-generating function G of X
are

E[X] =
θ

1− λ , Var[X] =
θ

(1− λ)3
and G(t) = e−θ(1+ 1

λ
W(−λe−λt))

for all t ∈ [−1, 1], where W denotes the (principle branch, i. e. W ≥ −1, of the)
Lambert W function [CGH+96] de�ned by the equation x = W (x) eW (x) for all
x ∈ R.
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5. X is logarithmically distributed with parameter q (q ∈ (0, 1)), in short
X ∼ Log(q), if and only if its support is N and its probability mass function is

P(X = n) =
−1

log(1− q)
qn

n
∀n ∈ N.

Then, expectation E and variance Var of X are

E[X] =
−1

log(1− q)
q

1− q and Var[X] = −q q + log(1− q)
(1− q)2 log(1− q)2 ,

and the probability-generating function of X is

G(t) =
log(1− qt)
log(1− q) ∀t ∈

(
− 1
q
, 1
q

)
.

6. X is (one-parameter) generalized extreme value distributed with
shape ξ (ξ ∈ R), in short X ∼ GEV(ξ), if and only if its support is the set
{x ∈ R | 1 + ξx > 0} and its cumulative distribution function is

F (x) =

e−(1+ξx)
− 1
ξ
, if ξ 6= 0,

e−e−x , if ξ = 0,
∀x ∈


R>− 1

ξ
, if ξ > 0,

R, if ξ = 0,

R<− 1
ξ
, if ξ < 0.

Then, expectation E and variance Var of X are

E[X] =


∞, if ξ ≥ 1,

γ, if ξ = 0,
Γ(1−ξ)−1

ξ
, else,

and Var[X] =


∞, if ξ ≥ 1

2
π2

6
, if ξ = 0,

Γ(1−2ξ)−Γ(1−ξ)2
ξ2

, else,

with Euler-Mascheroni constant γ = 0.57721 . . . [UC11] and gamma function Γ
[AS65, p 255].

7. X is (two-parameter) generalized Pareto distributed with shape ξ and
scale β (ξ ∈ R, β ∈ R>0), in short X ∼ GPar(ξ, β), if and only if its support is
R≥0 (if ξ ≥ 0) or

[
0, β|ξ|

)
(if ξ < 0) and its cumulative distribution function is

F (x) =

1−
(

1 + ξ
β
x
)− 1

ξ
, if ξ 6= 0,

1− e
− 1
β
x
, if ξ = 0,

∀x ∈

{
R≥0, if ξ ≥ 0,[
0, β|ξ|

)
, if ξ < 0.

Then, expectation E and variance Var of X are

E[X] =

{
β

1−ξ , if ξ < 1,

∞, if ξ ≥ 1,
and Var[X] =

{
β2

(1−ξ)2(1−2ξ)
, if ξ < 1

2
,

∞, if ξ ≥ 1
2
.
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8. X is gamma distributed with shape a and scale b (a, b ∈ R>0), in short
X ∼ Γ(a, b), if and only if its support is R≥0 and its probability density function
is

f(x) =
xa−1 e−

1
b
x

ba Γ(a)
∀x ∈ R≥0

with gamma function Γ [AS65, p 255]. Then, expectation E and variance Var of
X are

E[X] = ab and Var[X] = ab2.

9. X is normally distributed with mean µ and variance σ2 (σ2 ∈ R>0,
µ ∈ R), in short X ∼ N (µ, σ2), if and only if its support is R and its probability
density function is

f(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

∀x ∈ R.

Then, expectation E and variance Var of X are

E[X] = µ and Var[X] = σ2.

The distribution N (0, 1) is also called standard normal distribution.

2.4.6. Cumulants

The second characteristic function of a random variable X,

κ(t) := log
(
E
[
eitX

])
=

∞∑
n=1

κn[X]
(it)n

n!
∀t ∈ R

[Luk70, pp. 26�27], generates the cumulants of X (if they exist),

κn[X] =
dnκ
dtn

(0)

in
∀n ∈ N.

Cramér [Cra62, pp. 186�187] repeats this de�nition and indicates the �rst four
cumulants:

κ1[X] = E[X] , κ2[X] = Var[X] , κ3[X] = E
[
(X − E[X])3] ,

κ4[X] = E
[
(X − E[X])4]− 3Var[X]2 .

Conversely, moments of X are polynomials in cumulants [Cra62, pp. 186�187],

E[X] = κ1[X] , E
[
X2] = κ2[X] + κ1[X]2 ,

E
[
X3] = κ3[X] + 3κ2[X]κ1[X] + κ1[X]3

E
[
X4] = κ4[X] + 4κ3[X]κ1[X] + 3κ2[X]2 + 6κ2[X]κ1[X]2 + κ1[X]4 .
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Hald [Hal00] shows that the nth cumulant is additive and homogeneous of degree
n, i. e. for statistically independent random variables X1, . . . Xm and constants
c1, . . . , cm ∈ R (m ∈ N) it holds

κn
[∑m

j=1 cjXj
]

=

m∑
j=1

cj
n κn[Xj ] ∀n ∈ N.

Billinger [Bil69] found a law of total cumulants, which helps to calculate cumu-
lants from conditional cumulants. The general formula of this law yields for the
�rst four cumulants

κ1[X] =κ1

[
κ1[X|Y ]

]
,

κ2[X] =κ1

[
κ2[X|Y ]

]
+ κ2

[
κ1[X|Y ]

]
,

κ3[X] =κ1

[
κ3[X|Y ]

]
+ κ3

[
κ1[X|Y ]

]
+ 3 Cov

[
κ1[X|Y ] , κ2[X|Y ]

]
,

κ4[X] =κ1

[
κ4[X|Y ]

]
+ κ4

[
κ1[X|Y ]

]
+ 3κ2

[
κ2[X|Y ]

]
+ 4 Cov

[
κ1[X|Y ] , κ3[X|Y ]

]
+ 6 Cov

[
κ1[X|Y ]2 , κ2[X|Y ]

]
− 12 κ1

[
κ1[X|Y ]

]
Cov
[
κ1[X|Y ] , κ2[X|Y ]

]
,

where the conditional cumulants are de�ned via conditional moments [Dur10,
p. 221 et seqq.][Als05, p. 284 et seqq.]. If the term κ1[X|Y ] is almost surely con-
stant, it follows

κn[X] = κ1

[
κn[X|Y ]

]
+ 3κ2

[
κ2[X|Y ]

]
1{4}(n) ∀n ∈ {1, . . . , 4},

because for any constant c ∈ R it is κn[c] = 0 for all n ∈ N≥2.

2.4.7. Extreme Value Theory

When dealing with extreme events like �oods, accidents, records, etc., the so-
called extreme value theory gives suitable instruments for analysis. Stuart Coles
states a characterization of this mathematical discipline in the preface of An
introduction to Statistical Modeling of Extreme Values [Col07]:

�Extreme value theory is unique as a statistical discipline in that
it develops techniques and models for describing the unusual rather
than the usual. As an abstract study of random phenomena, the
subject can be traced back to the 20th century. It was not until the
1950's that the methodology was proposed in any serious way for the
modeling of genuine physical phenomena. It is no coincidence that
early applications of extreme value models were primarily in the �eld
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of civil engineering: engineers had always been required to design
their structures so that they would withstand the forces that might
reasonably be expected to impact upon them. Extreme value theory
provided a framework in which an estimate of anticipated forces could
be made using historical data.�

Among other things, extreme value theory examines the (approximate) distri-
bution of the maximum of random variables. To demonstrate this, let X1, X2, . . .
be statistically independent random variables with common cumulative distri-
bution function F and with �nite variance. The sum and the maximum of the
�rst n random variables (n ∈ N) shall be denoted by

Sn :=

n∑
i=1

Xi and Mn := max
1≤i≤n

Xi

respectively. Coles [Col07, p. 45] notes that the cumulative distribution function
of Mn is given by

P(Mn ≤ x) = F (x)n ∀x ∈ R.

This term depends on F though, which is unknown in many situations. When
dealing with the sum Sn, the well-known Central Limit Theorem [LC98, p. 58]
allows to approximate the distribution of Sn through a normal distribution,
i. e. there are sequences of constants (an)n∈N ⊆ R>0 and (bn)n∈N ⊆ R (e. g.
an = Var[Sn] and bn = E[Sn]) so that

P
(
Sn−bn
an

≤ x
)

n→∞−−−−→ FN (0,1)(x) ∀x ∈ R,

where FN (0,1) is the cumulative distribution function of a standard normal dis-
tribution.
On the other hand, the Fisher�Tippett Theorem [Col07, p. 46], also known

as Fisher�Tippett�Gnedenko Theorem [HF06, p. 6], indicates the following: if
there are series of constants (an)n∈N ⊆ R>0 and (bn)n∈N ⊆ R such that

P
(
Mn−bn
an

≤ x
)

n→∞−−−−→ H(x)

for all continuity points of H, where H is a nondegenerated cumulative distri-
bution function, then H is either part of the Fréchet, Gumbel or Weibull distri-
bution family. These so-called extreme value distribution families [Col07,
p. 47] are represented by the cumulative distribution functions

FFre(α) : R→ [0, 1] : x 7−→ e−x
−α
1R≥0

(x) (Fréchet)

FGum : R→ [0, 1] : x 7−→ e−e−x
1R≥0

(x) (Gumbel)

FWei(α) : R→ [0, 1] : x 7−→ e−(−x)α
1R<0(x) + 1R≥0

(x) (Weibull)
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where α ∈ R>0. In this situation one says that F is in the domain of attraction
of one of the three distribution families.
The Fréchet, Gumbel and Weibull families can be combined into a single

family called generalized extreme value distribution family. If FGEV(ξ) is
the cumulative distribution function of the one-parameter generalized extreme
value distribution as given in De�nition 2.4.2, it holds

FGEV(ξ)(x) =


FFre(1/ξ)(1 + ξx), if ξ > 0,

FGum(x), if ξ = 0,

FWei(−1/ξ)(−1− ξx), if ξ < 0,

∀x ∈ R.

Summarized, the Fisher�Tippett Theorem read as follows:

2.4.3 Theorem (Fisher�Tippett, [Col07, p. 46]). Let X1, X2, . . . be a se-
quence of statistically independent random variables with common cumulative
distribution function F . For any n ∈ N, let Mn be the maximum of the �rst n
random variables, Mn := max{Xi | 1 ≤ i ≤ n}. Suppose that there are sequences
of constants (an)n∈N ⊆ R>0 and (bn)n∈N ⊆ R and a non-degenerated cumulative
distribution function H such that

P
(
Mn−bn
an

≤ x
)

= F (anx+ bn)n
n→∞−−−−→ H(x)

for each continuity point of H. Then there are constants a and b (a ∈ R>0,
b ∈ R) such that

H(ax+ b) = FGEV(ξ)(x) ∀x ∈ R,
where FGEV(ξ) is the cumulative distribution function of the extreme value distri-
bution GEV(ξ).

Coles [Col07, pp. 51�52] as well as de Haan and Ferreira [HF06, pp. 11/34]
present some examples of distributions which are in the domain of attraction of
the generalized extreme value distribution. Thus, the Cauchy distribution is in
the Fréchet domain of attraction, exponential, gamma and normal distribution
are in the Gumbel domain of attraction, and beta and uniform distribution are
in the Weibull domain of attraction. Furthermore, de Haan and Ferreira [HF06]
list a lot of criteria to decide in which domain of attraction a distribution lies.
Here, the Fisher�Tippett Theorem is only a preliminary for a related theorem

which is very useful with regard to modeling SOLEs. Pickands [Pic75] was the
�rst to realize the connection between the characteristics of random maxima and
the generalized Pareto distribution as mentioned in De�nition 2.4.2. According
to that, large values above a high threshold are approximately generalized Pareto
distributed provided that the appropriate exact distribution is in the generalized
extreme value domain of attraction. The following formulation of this Theorem
can be found in [Sor04, p. 30], for example. More heuristic versions are written
down in [Col07, HF06].
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2.4.4 Theorem (Pickands�Balkema�de Haan, [Sor04, p. 30]). Let X1,
X2, . . . be a sequence of statistically independent random variables with common
cumulative distribution function F which is continuous at

xF := sup{x ∈ R |F (x) < 1}.

For any u ∈ R, de�ne the conditional excess distribution function

Fu : R→ [0, 1] : x 7−→ P(X1 ≤ u+ x |X1 > u) .

Now, the following statements are equivalent:

(i) There is a function β(u) ∈ R>0 such that

lim
u↗xF

sup
0<x<xF−u

∣∣Fu(x)− FGPar(ξ,β(u))(x)
∣∣ = 0,

where FGPar(ξ,β(u)) denotes the cumulative distribution function of the (two-
parameter) generalized Pareto distribution with shape ξ and scale β(u).

(ii) F satis�es the Fisher-Tippett Theorem 2.4.3 with extreme value parameter
ξ.





3. A Model for Supra Operating Load

Events

This chapter evolves a full model for analyzing supra operating load
events (SOLE) based on the available data as introduced in Chap-
ter 2. Section 3.1 de�nes the necessary mathematical framework.
Section 3.2 lists the requirements which are su�cient to answer the
main question from Section 2.3 concerning the distribution of SOLEs.
The main factors for this are the distributions of both number and
severity of SOLEs. Section 3.5 presents several approaches for the
distribution of numbers of SOLEs. Moreover, a hypothesis test is cre-
ated which helps to decide whether the number of SOLEs might be
Poisson distributed. Analogously, Section 3.6 introduces a suggestion
for the distribution of the severity of SOLEs. Beforehand, Section
3.3 examines the question of whether the number of SOLEs in two
or more disjoint ranges are independent, and Section 3.4 answers the
main question concerning the distribution of SOLEs including the
observed maximum event.

3.1. SOLEs in Mathematical Terminology

In automotive environment, a supra operating load event (SOLE) designates an
incident in tra�c where extreme loads act on a speci�c vehicle component (see
Section 2.1). Such an event is classi�ed by its severity, i. e. the exact absolute
load magnitude. Only occurrences with a value of load larger than a speci�ed
threshold earn the pre�x supra.
Of course, the severity of an arbitrary, randomly observed SOLE is not pre-

dictable exactly. Indeed, it is a stochastic phenomenon. This yields the mathe-
matical interpretation of a SOLE as a random variable with real function values
above a given threshold.

3.1.1 De�nition. A supra operating load event (SOLE) Ssev is a random
variable from a probability space (Ω,A,P) to the measurable space (S,S),

Ssev : (Ω,A,P)→ (S,S),
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where the severity space S is the set of all possible severities of a SOLE, and
the severity σ-algebra S shall be the Borel σ-algebra on S,

(S,S) := (R>usev ,B>usev)

with severity threshold usev (usev ∈ R>0). Fsev is the cumulative distribution
function of Ssev,

Fsev : R→ [0, 1] : t 7−→ P(Ssev ≤ t) .

For all A ∈ S, pA denotes the probability that a SOLE lies within A,

pA := P(Ssev ∈ A) .

The nature of SOLEs is not completely determined by their severity. The focus
must also be set on the frequency of their occurrence. The absolute maximum
load magnitude during an observation period depends not only on the possible
severity of any single event, but also on the number of events occurring during
the observation period. Of course, this number is a stochastic quantity, too.
Because SOLEs are incidences in tra�c that only take place if the vehicle is

on the move, the observation period is speci�ed in mileage (see Section 2.2). It
thus makes sense to de�ne the number of events during one distance unit, which
shall be one kilometer.

3.1.2 De�nition. The number of supra operating load events during
one kilometer Nnum is a random variable from a probability space (Ω,A,P) to
the measurable space (N0,P0),

Nnum : (Ω,A,P)→ (N0,P0).

The cumulative distribution function of Nnum is denoted by Fnum,

Fnum : R→ [0, 1] : t 7−→ P(Nnum ≤ t) .

Gnum is the probability-generating function of Nnum,

Gnum : Gnum → R : t 7−→ E
[
tNnum

]
=

∞∑
n=0

tn P(Nnum = n)

with domain Gnum ([−1, 1] ⊆ Gnum ⊆ R).

The last de�nition, or rather the nomenclature in the last de�nition, only
is reasonable under the assumption that the occurrence rate of SOLEs does
not change over a period of time. This supposition ensures that a distance is
indistinguishable from any other distance of the same length with regard to the
number of SOLEs. One can argue whether this treatment is realistic or not,
because a vehicle with a high mileage may be treated with less care than a
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brand-new one, which could lead to a higher occurrence rate for SOLEs. But
there is no quanti�ed information about such a process, so, a change of rate is
excluded.
Similar to the rate, the severity of a SOLE shall be independent of the mileage.

Furthermore, by de�nition, a SOLE is very rare. So, it is plausible that the
severity of one SOLE is not in�uenced by the characteristics of any other. Let
us summarize the mentioned assumptions.

3.1.3 Assumption. (A1) The occurrence rate of SOLEs does not depend on
the mileage.

(A2) The occurrence rate of SOLEs is not in�uenced by the number, severity
and mileage of previous events.

(A3) The severity of a SOLE does not depend on the mileage.

(A4) The severity of a SOLE is independent of the number, severity and mileage
of previous events.

With these assumptions, the number of SOLEs during l kilometers is just
the sum of l statistically independent and identically distributed random vari-
ables distributed according to Nnum, because the mileage is measured in integer
numbers of kilometers (see Section 2.2).

3.1.4 De�nition. Suppose, N1, N2, . . . and S1, S2, . . . are statistically indepen-
dent random variables with Ni ∼ Fnum and Si ∼ Fsev for all i ∈ N. For all l ∈ N
and A ∈ S, the random variables N∗lnum and Zl,A are de�ned as

N∗lnum :=
l∑
i=1

Ni and Zl,A :=

N∗lnum∑
i=1

1A(Si) .

The probability-generating functions of Zl,A and (Zl,A1 , . . . , Zl,Ad) shall be de-
noted by Gl,A and Gl,A1...Ad respectively (A1, . . . , Ad ∈ S, d ∈ N≥2),

Gl,A : Gl,A → R : t 7−→ E
[
tZl,A

]
Gl,A1...Ad : Gl,A1...Ad → R

d : (t1, . . . td) 7−→ E

[
d∏
k=1

t
Zl,Ak
k

]

with domains Gl,A of Gl,A and Gl,A1...Ad of Gl,A1...Ad ([−1, 1] ⊆ Gl,A ⊆ R,
[−1, 1]d ⊆ Gl,A1...Ad ⊆ R

d).

Under assumptions (A1) and (A2) in Assumption 3.1.3, N∗lnum is the number
of SOLEs during l kilometers and, if additionally the assumptions (A3) and (A4)
hold, Zl,A is the number of events with severity in A during l kilometers.



22 3. A Model for Supra Operating Load Events

3.2. Distribution of Counts per Range and Mileage

By de�nition, the question of how many events can be observed within a range
A during l kilometers can be answered if the distribution of Zl,A is known (see
De�nition 3.1.4). The following three points are together a su�cient condition
for specifying this distribution:

� The approach is based on the assumptions (A1)-(A4) in Assumption
3.1.3.

� The distribution of the total number of SOLEs during one kilometer,
Fnum, is known.

� The distribution of a SOLE, Fsev, is known.

If these three statements are true, the probabilities pA and the distribution of
N∗lnum are known. The next proposition veri�es that this knowledge is su�cient
for determining the distribution of Zl,A. In addition, the proposition indicates
the probability-generating function of Zl,A, since it plays an important part
in several derivations and argumentations below (e. g. Example 3.2.2, Theorem
3.3.2).

3.2.1 Proposition. Let be l ∈ N and A ∈ S.

1. The distribution of Zl,A is given by

P(Zl,A = z) =
pA
z

z!

∞∑
n=0

(
(1− pA)n

n!
(n+ z)! P

(
N∗lnum = n+ z

))
for all z ∈ N0.

2. If Nnum is integrable, then expectation and variance of Zl,A exist and

E[Zl,A] = l pA E[Nnum] ,

Var[Zl,A] = l pA E[Nnum] + l pA
2 (Var[Nnum]− E[Nnum]

)
.

3. The probability-generating function of Zl,A is given by

Gl,A(t) = Gnum(1 + pA(t− 1))l ∀t ∈ Gl,A

with domain Gl,A = {t ∈ R | (1 + pA(t− 1)) ∈ Gnum }.
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Proof. 1.: Suppose, the total number of SOLEs during l kilometers is N∗lnum = n
(n ∈ N). Each of the n events lies either in the range A (with probability pA)
or in its complement (with probability 1 − pA). Hence, the conditional random
variable Zl,A given N∗lnum = n is binomially distributed,

P
(
Zl,A = z

∣∣∣N∗lnum = n
)

=
n!

z! (n− z)! pA
z (1− pA)n−z ∀z ∈ N≤n.

The relation

P(Zl,A = z) =

∞∑
n=0

P
(
Zl,A = z

∣∣∣N∗lnum = n+ z
)
P
(
N∗lnum = n+ z

)
proves the �rst statement.

2.: Since Nnum and, therefore, N∗lnum are integrable, the evident fact

0 ≤ Zl,A ≤ N∗lnum P - a. s.

ensures the existence of expectation and variance of Zl,A. The values can be cal-
culated easily by using their conditional versions. The statistical independence
of the Ni and the Si in the de�nition of Zl,A (see De�nition 3.1.4) leads to

E
[
Zl,A

∣∣∣N∗lnum ] =

N∗lnum∑
i=1

E[1A(Si)] = pAN
∗l
num P - a. s.,

Var
[
Zl,A

∣∣∣N∗lnum ] =

N∗lnum∑
i=1

Var[1A(Si)] = pA (1− pA)N∗lnum P - a. s.

The law of total expectation [Wei05, pp. 380�383],

E[Zl,A] = E
[
E
[
Zl,A

∣∣∣N∗lnum ]] = pA E
[
N∗lnum

]
= l pA E[Nnum] ,

and the law of total variance [Wei05, pp. 385�386],

Var[Zl,A] = E
[
Var

[
Zl,A

∣∣∣N∗lnum ]]+ Var
[
E
[
Zl,A

∣∣∣N∗lnum ]]
= l pA (1− pA)E[Nnum] + l pA

2 Var[Nnum]

prove the second part of the proposition.

3.: For all t ∈ R, the de�nitions of N∗lnum and Zl,A ensure

E
[
tZl,A

∣∣∣N∗lnum] =

N∗lnum∏
i=1

E
[
t1A(Si)

]
= (1− pA + pAt)

N∗lnum =

l∏
i=1

(1 + pA(t− 1))Ni .
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Whenever s := (1 + pA(t− 1)) ∈ Gnum, the expectation of the term above exists,

E
[
tZl,A

]
= E

[
E
[
tZl,A

∣∣∣N∗lnum]] =

l∏
i=1

E
[
sNi
]

= Gnum(s)l.

In some standard cases the distribution of Zl,A is in the same distribution
family as the distribution of Nnum, i. e. only the values of the distribution pa-
rameters di�er. That happens, for example, if Nnum is Poisson, binomially or
negative binomially distributed (see (a)-(c) in Example 3.2.2 below). However,
this behavior is not transferable to the general case (see (d)-(e) in Example
3.2.2 below). The conjecture is that Poisson, binomial and negative binomial
distribution are the only ones with these characteristics.
The third statement in Proposition 3.2.1 provides a criterion to verify whether

the distributions of Nnum and Zl,A only di�er in their parameter values. All
to do is prove if a transformation of the distribution parameters changes the
probability-generating function Gnum(t) to be the term Gnum(1 + pA(t− 1))l.
The following example applies this criterion to the Poisson, binomial and neg-

ative binomial distribution. Using the example of the generalized Poisson dis-
tribution, a technique is shown how to prove that Nnum and Zl,A are not in the
same distribution family (this fact can be gathered with help of Ambagaspitiya
and Balakrishnan [AB94], too). The logarithmic distribution does not satisfy
the criterion above, too.

3.2.2 Example. (a) Suppose, Nnum is binomially distributed with r trials and
success probability q (r ∈ N, q ∈ (0, 1)), then the corresponding probability-
generating function is (see De�nition 2.4.2)

Gnum(t) = (1 + q(t− 1))r ∀t ∈ R.

Hence, Proposition 3.2.1 yields

Gl,A(t) = (1 + qpA(t− 1))rl ∀t ∈ R.

Thus, Gl,A is the probability-generating function of a binomial distribution with
rl trials and success probability qpA. Due to the fact that a distribution is clearly
de�ned by its probability-generating function [Als05, p. 222], Zl,A has to be bi-
nomially distributed, too, more precisely Zl,A ∼ Bin(rl, qpA).

(b) Suppose, Nnum is Poisson distributed with mean λ (λ ∈ R>0), then the
corresponding probability-generating function is (see De�nition 2.4.2)

Gnum(t) = eλ(t−1) ∀t ∈ R.
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Hence, Proposition 3.2.1 yields

Gl,A(t) = eλlpA(t−1) ∀t ∈ R.

Thus, Zl,A is Poisson distributed, too, more precisely Zl,A ∼ Poi(λlpA).

(c) Suppose, Nnum is negative binomially distributed with exponent % and
mean µ (%, µ ∈ R>0), then the corresponding probability-generating function is
(see De�nition 2.4.2)

Gnum(t) =

(
%

%− µ(t− 1)

)%
∀t ∈

(
− %+µ

µ
, %+µ

µ

)
.

Hence, Proposition 3.2.1 yields

Gl,A(t) =

(
%

%− µpA(t− 1)

)%l
=

(
%l

%l − µlpA(t− 1)

)%l
for all t ∈

(
− %+µ(2−pA)

µpA
, %+µpA

µpA

)
. Thus, Zl,A is negative binomially distributed,

too, more precisely Zl,A ∼ NBin(%l, µlpA).

(d) Suppose that Nnum is generalized Poisson distributed with parameters
θ and λ (θ ∈ R>0, λ ∈ (0, 1)), then the corresponding probability-generating
function is (see De�nition 2.4.2)

Gnum(t) = e−θ(1+ 1
λ
W(−λe−λt)) ∀t ∈ [−1, 1].

Hence, Proposition 3.2.1 yields

Gl,A(t) = e−θl(1+ 1
λ
W(−λe−λ(1+pA(t−1)))) ∀t ∈

[
− 2−pA

pA
, 1
]
.

If Zl,A was generalized Poisson distributed, too, then parameters θ∗ ∈ R>0 and
λ∗ ∈ [0, 1) would exist such that

Gl,A(t) = e
−θ∗

(
1+ 1

λ∗W
(
−λ∗e−λ

∗
t
))

∀t ∈ [−1, 1].

In particular, due to W(0) = 0, it would hold

θ∗ = − log(Gl,A(0)) = θl

(
1 +

1

λ
W
(
−λe−λ (1− pA)

))
(3.1)

On the other hand, if Zl,A really was generalized Poisson distributed with pa-
rameters θ∗ and λ∗ from above, it would be

E[Nnum] =
θ

1− λ , E[Zl,A] =
θ∗

1− λ∗
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and

Var[Nnum] =
θ

(1− λ)3
, Var[Zl,A] =

θ∗

(1− λ∗)3
.

These values inserted into the formulas in the second statement of Proposition
3.2.1 would yield

θ∗ = θl
pA√

(1− pA) (1− λ)2 + pA︸ ︷︷ ︸
=:f(λ,pA)

. (3.2)

The two expressions of θ∗ in Equation (3.1) and Equation (3.2) above would
result in the relation

1 +
1

λ
W
(
−λe−λ (1− pA)

)
= f(λ, pA),

which is equivalent to

1 =
1− f(λ, pA)

1− pA
eλf(λ,pA).

However, it can be shown that the right-hand side of the last equation exceeds
1 for every λ ∈ (0, 1) and every pA ∈ (0, 1). Consequently, Zl,A cannot be gener-
alized Poisson distributed.

(e) Suppose, the random variable X := Nnum+1 is logarithmically distributed
with parameter q (q ∈ (0, 1)), then the corresponding probability-generating
function is (see De�nition 2.4.2)

GX(t) =
log(1− qt)
log(1− q) ∀t ∈

(
− 1
q
, 1
q

)
.

By de�nition of a probability-generating function (see De�nition 2.4.1), it then
must be

Gnum(t) =

{
GX(t)
t

= log(1−qt)
t log(1−q) , if t ∈

(
− 1
q
, 0
)
∪
(

0, 1
q

)
,

limt→0
GX(t)
t

= −q
log(1−q) , if t = 0.

If Z1,A + 1 was logarithmically distributed, too, then a parameter q∗ ∈ (0, 1)
would exist such that the probability-generating function of Z1,A is

G1,A(t) =


log(1−q∗t)
t log(1−q∗) , if t ∈

(
− 1
q∗ , 0

)
∪
(

0, 1
q∗

)
,

−q∗
log(1−q∗) , if t = 0.

In particular, it would hold

q∗ = 1− exp
(
− q∗

G1,A(0)

)
, (3.3)
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and therefore

E[Z1,A] =
−1

log(1− q∗)
q∗

1− q∗ − 1 = G1,A(0)
(

exp
(

q∗

G1,A(0)

)
− 1
)
− 1

(see De�nition 2.4.2). This last relation is equivalent to

q∗ = G1,A(0) log

(
E[Z1,A]+G1,A(0)+1

G1,A(0)

)
.

Together with Equation (3.3) above it would follow

1 =
q∗

1− exp
(
− q∗

G1,A(0)

)
= G1,A(0)

E[Z1,A] +G1,A(0) + 1

E[Z1,A] + 1
log

(
E[Z1,A]+G1,A(0)+1

G1,A(0)

)
.

(3.4)

However, Proposition 3.2.1 yields

E[Z1,A] =
−1

log(1− q)
qpA

1− q − pA and G1,A(0) =
log(1− q + qpA)

(1− pA) log(1− q) ,

and with that it can be shown that the right-hand side of Equation (3.4) exceeds
1 for every q ∈ (0, 1) and every pA ∈ (0, 1). Consequently, Zl,A + 1 cannot be
logarithmically distributed.

With regard to the statistical analysis in Chapter 4, let us generalize Propo-
sition 3.2.1. The next theorem provides the common distribution of the number
of SOLEs in several regions. It is easy to see that Proposition 3.2.1 is a special
case of it.

3.2.3 Theorem. Let be l ∈ N and let A1, . . . Ad ∈ S be disjoint measurable sets
(d ∈ N≥2).

1. The common distribution of (Zl,A1 , . . . , Zl,Ad) is given by

P(Zl,A1 = z1, . . . , Zl,Ad = zd) =

(
d∏
k=1

pAk
zk

zk!

)

·
∞∑
n=0


(

1−
∑d
k=1 pAk

)n
n!

(
n+

∑d
k=1 zk

)
! P
(
N∗lnum = n+

∑d
k=1 zk

)
for all (z1, . . . , zd) ∈ N0

d.
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2. If it is P
(
Ssev ∈

⋃d
k=1 Ak

)
= 1, then

P(Zl,A1 = z1, . . . , Zl,Ad = zd)

=

(
d∏
k=1

pAk
zk

)
P
(
N∗lnum =

∑d
k=1 zk

) (∑d
k=1 zk

)
!∏d

k=1 zk!

for all (z1, . . . , zd) ∈ N0
d.

3. The probability-generating function of (Zl,A1 , . . . , Zl,Ad) is given by

Gl,A1...Ad(t1, . . . , td) = Gnum

(
1 +

∑d
k=1 pAk (tk − 1)

)l
for all (t1, . . . , td) ∈ Gl,A1...Ad with domain

Gl,A1...Ad =

{
(t1, . . . , td) ∈ Rd

∣∣∣∣∣ 1 +

d∑
k=1

pAk (tk − 1) ∈ Gnum

}
.

Proof. 1.: The calculation of the distribution of (Zl,A1 , . . . , Zl,Ad) runs similar
to the one in Proposition 3.2.1. Again, suppose the number of SOLEs during l
kilometers is N∗lnum = n (n ∈ N). Then each event lies either in one of the sets
Ak with probability pAk or in the set

Ad+1 := S \ (A1 ∪ . . . ∪Ad)

with probability pAd+1 . Hence, the distribution of (Zl,A1 , . . . , Zl,Ad+1) given
N∗lnum = n is multinomially distributed,

P
(
Zl,A1 = z1, . . . , Zl,Ad+1 = zd+1

∣∣∣N∗lnum = n
)

= n!

(
d+1∏
k=1

pAk
zk

zk!

)
1{n}

(∑d+1
k=1 zk

)
for all (z1, . . . zd+1) ∈ N0

d+1. The remark

P(Zl,A1 = z1, . . . , Zl,Ad = zd) =
∞∑

zd+1=0

P
(
Zl,A1 = z1, . . . , Zl,Ad+1 = zd+1

∣∣∣N∗lnum =
∑d+1
k=1 zk

)
P
(
N∗lnum=

∑d+1
k=1 zk

)
�nishes the proof of the �rst statement if it is kept in mind that it holds
pAd+1 = 1−

∑d
k=1 pAk .
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2.: Here it holds
∑d
k=1 pAk = 1. Thus, all addends in the �rst statement of

this theorem are equal to 0 except for n = 0.

3.: For (t1, . . . , td) ∈ Rd, the de�nitions of N∗lnum and Zl,A (see De�nition
3.1.4) ensure

E
[∏d

k=1 t
Zl,Ak
k

∣∣∣N∗lnum] =

N∗lnum∏
i=1

E
[∏d

k=1 t
1Ak

(Si)

k

]

=

l∏
i=1

Ni∏
j=1

(
1−

d∑
k=1

pAk +

d∑
k=1

pAk tk

)
.

Whenever s :=
(

1 +
∑d
k=1 pAk (tk − 1)

)
∈ Gnum, the expectation of the term

above exists:

E

[
d∏
k=1

t
Zl,Ak
k

]
= E

[
E

[
d∏
k=1

t
Zl,Ak
k

∣∣∣∣∣N∗lnum
]]

=

l∏
i=1

E
[
sNi
]

= Gnum(s)l.

3.3. (In-)dependence of Number of SOLEs in Disjoint

Ranges

Whether or not the numbers of SOLEs in two or more disjoint subsets of S
are statistically independent depends on the chosen distribution Fnum for sure.
Theorem 3.3.2 below shows that Zl,A1 and Zl,A2 (A1, A2 ∈ S, A1 ∩ A2 = ∅,
pA1 , pA2 > 0) are statistically independent if and only if Nnum is Poisson dis-
tributed.
Before verifying this, the next result deals with a weaker condition than statis-

tical independence: uncorrelatedness. Lemma 3.3.1 shows that Zl,A1 and Zl,A2

are uncorrelated if and only if the index of dispersion of Nnum is equal to 1.

3.3.1 Lemma. Let be l ∈ N and let A1, A2 ∈ S be disjoint measurable sets. If
Nnum is integrable, then the covariance of Zl,A1 and Zl,A2 is given by

Cov[Zl,A1 , Zl,A2 ] = l pA1pA2

(
Var[Nnum]− E[Nnum]

)
.

Proof. The de�nition of a probability-generating function [UC11] ensures

lim
t1,t2↗1

∂2Gl,A1A2

∂t1∂t2
(t1, t2) = E[Zl,A1 Zl,A2 ] .
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However, the probability-generating function Gl,A1A2 is given in Theorem 3.2.3,

Gl,A1A2(t1, t2) = Gnum

(
1 + pA1(t1 − 1) + pA2(t2 − 1)

)l
.

With ct1,t2 := 1 +
∑2
k=1 pAk (tk − 1), the derivative of Gl,A1A2 with respect to

both variables is

∂2Gl,A1A2

∂t1∂t2
(t1, t2) = l(l − 1) pA1pA2 Gnum(ct1,t2)l−2 dGnum

dt
(ct1,t2)2

+ l pA1pA2 Gnum(ct1,t2)l−1 d2Gnum
dt2

(ct1,t2).

Since well-known properties of probability-generating functions ensure

lim
t↗1

Gnum(t) = 1, lim
t↗1

dGnum
dt

(t) = E[Nnum] ,

lim
t↗1

d2Gnum
dt2

(t) = E
[
Nnum

2]− E[Nnum]

[UC11], the sought-after derivative is

E[Zl,A1 Zl,A2 ] = lim
t1,t2↗1

∂2Gl,A1A2

∂t1∂t2
(t1, t2)

= l pA1pA2

(
lE[Nnum]2 + Var[Nnum]− E[Nnum]

)
.

The expectations of Zl,A1 and Zl,A2 from Proposition 3.2.1 yield the desired
result.

In other words, the index of dispersion of Nnum controls the covariance of Zl,A1

and Zl,A2 :

Cov[Zl,A1 , Zl,A2 ] S 0 ⇔ Var[Nnum] S E[Nnum] ⇔ D[Nnum] S 1.

This con�rms the intuition with regard to the in�uence of Zl,A1 on Zl,A2 . Sup-
pose, the variance of Nnum is larger than its expectation. A high number of
SOLEs in A1 during l kilometers then indicates that the total number of events
N∗lnum is great. Hence, the number of SOLEs in A2 will be high, too. On the
other hand, let the variance of Nnum be less than its expectation. A small vari-
ance means that realizations of N∗lnum are frequently close together. Therefore,
an extreme number of SOLEs in A1 hints at a small number of SOLEs in A2.

Since uncorrelatedness is a necessary condition for statistical independence,
the index of dispersion of Nnum must be equal to 1 if Zl,A1 and Zl,A2 are inde-
pendent. However, similar to the general case, independence is not a consequence
of uncorrelatedness. As mentioned, Zl,A1 and Zl,A2 are statistically independent
only in the Poisson case.
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3.3.2 Theorem. Let be l ∈ N and let A1, A2 ∈ S be disjoint measurable sets
with pA1 , pA2 > 0. Suppose Fnum(0) < 1. Then the following statements are
equivalent:

(i) The random variables Zl,A1 and Zl,A2 are statistically independent.

(ii) The number of SOLEs per kilometer, Nnum, is Poisson distributed.

If the equivalent statements above hold, then also the random variables Zl,A1 , . . . ,
Zl,Ad are statistically independent if A3, . . . , Ad ∈ S with A1 ∩ . . . ∩ Ad = ∅
(d ∈ N≥2).

Proof. (i)⇒ (ii): Since the random variables Zl,A1 and Zl,A2 are statistically
independent, it holds

Gl,A1A2(t1, t2) = E
[
t
Zl,A1
1 t

Zl,A2
2

]
= E

[
t
Zl,A1
1

]
· E
[
t
Zl,A2
2

]
= Gl,A1(t1) ·Gl,A2(t2)

for all (t1, t2) ∈ (Gl,A1 × Gl,A2) ∩ Gl,A1A2 . The probability-generating functions
are given in Proposition 3.2.1 and Theorem 3.2.3. It follows for the stated (t1, t2)

Gnum

(
1 +

∑2
k=1 pAk (tk − 1)

)
=

2∏
k=1

Gnum(1 + pAk (tk − 1)) .

In particular, since it is [−1, 1] ⊆ Gnum, it follows

Gnum (1− x1 − x2) = Gnum(1− x1) ·Gnum(1− x2) ∀(x1, x2) ∈ [0, 1]2.

Consequently, for any rational number m
n
∈ Q ∩ (0, 1) with m,n ∈ N it holds

Gnum

(
m
n

)
= Gnum

(
1− n−m

n

)
= Gnum

(
1− n−m−1

n

)
·Gnum

(
1− 1

n

)
= . . . = Gnum

(
1− 1

n

)n−m
=
(
Gnum

(
1− 1

n

)n)1−mn
=
(
Gnum

(
1− 2

n

)n−1
)1−m

n

= . . . = Gnum(0)1−m
n .

Gnum(0) cannot be equal to 0, because as a probability-generating function Gnum

is continuous and Gnum(1) = 1. Thus, if Gnum(0) was equal to 0, it would be

1 = Gnum(1) = lim
n→∞

Gnum

(
n−1
n

)
= lim
n→∞

Gnum(0)
1
n = 0  .

Hence, Gnum(0) is positive, and the continuity of Gnum ensures that even for all
real t ∈ [0, 1] the equation

Gnum(t) = Gnum(0)1−t = e− log(Gnum(0)) (t−1)
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holds. But since it is 1 > Fnum(0) = Gnum(0), this is exactly the probability-
generating function of a Poisson distribution (see De�nition 2.4.2). Due to the
fact that a distribution is well-de�ned by its probability-generating function on
[0, 1] [Als05, 222], Nnum has to be Poisson.

(ii)⇒ (i): Suppose that Nnum is Poisson distributed with mean λ (λ ∈ R>0).
Example 3.2.2 shows that Zl,A is Poisson distributed with mean λlpA. Together
with the results of Theorem 3.2.3 it follows

P(Zl,A1 = z1) P(Zl,A2 = z2) =

2∏
k=1

(λlpAk )zk

zk!
e−λlpAk = P(Zl,A1 = z1, Zl,A2 = z2)

for all z1, z2 ∈ N0, which is the de�nition of statistical independence. This result
can easily be generalized to more than two variates Zl,A1 , . . . , Zl,Ad .

3.4. Including the Maximum SOLE

Besides the total number of SOLEs, also the maximum SOLE will be of interest.
Since a SOLE is de�ned as an event with a severity above a threshold usev,
the maximum SOLE just is the maximum of all events above usev. Like the
total number of SOLEs Nnum, also the maximum SOLE shall be scaled to one
kilometer.

3.4.1 De�nition. Let N1, N2, . . . and S1, S2, . . . be the same statistically in-
dependent random variables as in De�nition 3.1.4 (Ni ∼ Fnum, Si ∼ Fsev for
all i ∈ N). Under assumptions (A1)-(A4) in Assumption 3.1.3, the maximum
supra operating load event during one kilometer Msev and, for all l ∈ N,
the maximum supra operating load event during l kilometers M∗lsev are
the random variables de�ned by

Msev :=

{
max {S1, . . . , SNnum} , if Nnum > 0,

0, if Nnum = 0,

M∗lsev :=

{
max

{
S1, . . . , SN∗lnum

}
, if N∗lnum > 0,

0, if N∗lnum = 0.

Remember that assumptions (A1)-(A4) in Assumption 3.1.3 and the knowl-
edge of Fnum and Fsev are su�cient for specifying the distribution of Zl,A (see
page 22). This can be transferred to the maximum SOLE. The probability-
generating function Gnum plays an important part again as can be seen in the
following proposition.
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3.4.2 Proposition. Let be l ∈ N. The distribution of M∗lsev is given by

P
(
M∗lsev ≤ t

)
=

{∑∞
n=0 Fsev(t)n P

(
N∗lnum = n

)
= Gnum(Fsev(t))l , if t ∈ R≥0

0, if t ∈ R<0.

Proof. Since M∗lsev is nonnegative, the cumulative distribution function of M∗lsev
is equal to 0 on R<0. Furthermore, due to Ssev > usev,

P
(
M∗lsev ≤ t

)
= P

(
N∗lnum = 0

)
= P(Nnum = 0)l = Gnum(0)l ∀t ∈ [0, usev].

Keeping in mind that Fsev(t) = 0 for all t ∈ [0, usev], the proof is done for all
t ∈ R≤usev .
For all t ∈ S (= R>usev), the �rst equation is established by the obvious

equivalence
M∗lsev ≤ t ⇔ Zl,(t,∞) = 0

together with the result of Proposition 3.2.1 and the actuality

1− p(t,∞) = 1− (1− Fsev(t)) = Fsev(t).

For the proof of the second equation, �rst note that N∗lnum = Zl,S , which yields
with the de�nition of a probability-generating function

∞∑
n=0

Fsev(t)n P
(
N∗lnum = n

)
= Gl,S(Fsev(t)) .

Due to pS = 1, Proposition 3.2.1 now states

Gl,S(Fsev(t)) = Gnum(1 + pS(Fsev(t)− 1))l = Gnum(Fsev(t))l .

The following example shows how easy it is to �x the distribution of the
maximum SOLE during a given mileage when only the probability-generating
function of Nnum and the cumulative distribution function of Ssev are known.

3.4.3 Example. (a) Suppose, Nnum is binomially distributed with r trials and
success probability q (r ∈ N, q ∈ (0, 1)). Then

P
(
M∗lsev ≤ t

)
=
(
1 + q(Fsev(t)− 1)

)rl
1R≥0

(t) ∀t ∈ R.

(b) Suppose, Nnum is Poisson distributed with mean λ (λ ∈ R>0). Then

P
(
M∗lsev ≤ t

)
= eλl(Fsev(t)−1)

1R≥0
(t) ∀t ∈ R.

(c) Suppose, Nnum is negative binomially distributed with exponent % and
mean µ (%, µ ∈ R>0). Then

P
(
M∗lsev ≤ t

)
=

(
%

%− µ(Fsev(t)− 1)

)%l
1R≥0

(t) ∀t ∈ R.
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More interesting than the single distribution of the maximum SOLE is the
simultaneous distribution of maximum SOLE and number of SOLEs per range.
Assume, the severity space S is divided into three disjoint intervals,

S = (usev, t1] ∪ (t1, t2] ∪ (t2,∞),

where usev < t1 < t2 <∞. The number of SOLEs per interval during l kilome-
ters (l ∈ N) shall be

Zl,(usev,t1] = z1, Zl,(t1,t2] = z2, Zl,(t2,∞) = z3.

The maximum SOLE tmax shall be located between t1 and t2, tmax ∈ (t1, t2).
Consequently, the third interval must be empty, z3 = 0, while at least one SOLE,
the maximum one, is observed within the second interval, z2 ≥ 1. Actually, the
z2−1 SOLEs which are located in (t1, t2) next to the maximum SOLE lie between
t1 and tmax,

Zl,(usev,t1] = z1, Zl,(t1,tmax] = z2, Zl,(tmax,∞) = 0, M∗lsev = tmax.

Generally, one gets the following result.

3.4.4 Theorem. Let be l ∈ N and let A1, . . . , Ad ∈ S be disjoint measurable
sets (d ∈ N≥2) such that there exist a ∈ R>usev , b ∈ R>a and c ∈ {0, . . . , d} (if
c = d, then b→∞) with

c⋃
k=1

Ak ⊆ (usev, a] and
d⋃

k=c+1

Ak = (b,∞).

Suppose E denotes the event E := {Zl,A1 = z1, . . . , Zl,Ac = zc} for an arbitrary
(z1, . . . , zc) ∈ N0

c. Then it holds for all z ∈ N

P
(
M∗lsev ≤ t, E, Zl,(a,b] = z, Zl,Ac+1 = 0, . . . , Zl,Ad = 0

)
=

{
P
(
E, Zl,(a,b] = z, Zl,(b,∞) = 0

)
1(b,∞)(t) , if t ∈ R \ (a, b],

P
(
E, Zl,(a,t] = z, Zl,(t,∞) = 0

)
, if t ∈ (a, b].

In addition, if Fsev is absolutely continuous and fsev is (almost everywhere) the
derivative of Fsev, then the common probability density function of M∗lsev and
(Zl,A1 , . . . Zl,Ad) is

d
dt
P
(
M∗lsev ≤ t, E, Zl,(a,b] = z, Zl,Ac+1 = 0, . . . , Zl,Ad = 0

)
=
z fsev(t)

p(a,t]
P
(
E, Zl,(a,t] = z, Zl,(t,∞) = 0

)
1(a,b](t) ∀a.s.t ∈ R.
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Proof. Due to {Zl,Ac+1 = 0, . . . , Zl,Ad = 0} =
{
Zl,(b,∞) = 0

}
, the random vari-

ables which are equal to 0 can be combined with each other to one random
variable. The �rst result comes from the relation{

M∗lsev ≤ t, Zl,(a,b] = z, Zl,(b,∞) = 0
}

=


∅, if t ≤ a{
Zl,(a,t] = z, Zl,(t,∞) = 0

}
, if t ∈ (a, b]{

Zl,(a,b] = z, Zl,(b,∞) = 0
}
, if t > b.

The rest of the theorem follows with Theorem 3.2.3, which states

P
(
E, Zl,(a,t] = z, Zl,(t,∞) = 0

)
=

(
p(a,t]
p(a,b]

)z
P
(
E, Zl,(a,b] = z, Zl,(b,∞) = 0

)
,

and the fact
d
dt
p(a,t] = d

dt

(
Fsev(t)− Fsev(a)

)
= fsev(t) .

Thus, the derivative with respect to t is

d
dt
P
(
E, Zl,(a,t] = z, Zl,(t,∞) = 0

)
= z fsev(t)

p(a,t]
z−1

p(a,b]z
P
(
E, Zl,(a,b] = z, Zl,(b,∞) = 0

)
=
z fsev(t)

p(a,t]
P
(
E, Zl,(a,t] = z, Zl,(t,∞) = 0

)
.

Especially if it holds P
(
Ssev ∈

⋃d
k=1 Ak ∪ [a, b)

)
= 1 in Theorem 3.4.4, the

second statement from Theorem 3.2.3 yields together with the result of Theorem
3.4.4

d
dt
P
(
M∗lsev ≤ t, E, Zl,(a,b] = z, Zl,Ac+1 = 0, . . . , Zl,Ad = 0

)
= y1 fsev(t) P

(
E, Zl,(a,t] = z, Zl,(t,∞) = 0

)
1(a,b](t)

= y2 fsev(t) P
(
E, Zl,(a,t] = z − 1, Zl,(t,∞) = 0

)
1(a,b](t) ,

(3.5)

where

y1 :=
z

p(a,t]
and y2 :=

P
(
N∗lnum = z +

∑c
k=1 zk

)
P
(
N∗lnum = z − 1 +

∑c
k=1 zk

) (z +
c∑

k=1

zk

)
.

Hence, the common probability of (Zl,A1 , . . . , Zl,Ac , Zl,[a,b), Zl,Ac+1, . . . , Zl,Ad)

and M∗lsev can be interpreted in two ways (see Equation (3.5) above): either the
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maximum SOLE itself is counted in the interval (a, t] ( Zl,(a,t] = z) and a
correction factor collects the fact that in truth the location of the maximum
SOLE is known in detail ( y1), or the maximum SOLE itself is not counted
in the interval (a, t] ( Zl,(a,t] = z − 1) and a correction factor collects the fact
that one event is not counted ( y2). It is worth mentioning that y1 depends on
Fsev and is independent of Fnum while y2 only depends on Fnum and not on Fsev.
Depending on whether the severity or the number of SOLEs shall be analyzed,
the �rst or the second interpretation is preferred.

3.5. Selecting the Distribution of Number of SOLEs per

Kilometer

When looking for a convenient distribution for the number of SOLEs per kilome-
ter, Fnum, the Poisson distribution (see De�nition 2.4.2) is an adequate choice.
This distribution was �rst introduced by the French mathematician Siméon D.
Poisson published in 1837 in his work Recherches sur la probabilité des jugements
en matière criminelle et en matière civile (Research on the Probability of Judg-
ments in Criminal and Civil Matters [Poi37]). According to Yang [YHAV07] �the
Poisson model is the usual approach to analysis� when analyzing counts.
Prem C. Consul gives an outline of the derivation of the Poisson distribution

and characterizes it in his introduction to the �rst chapter of Generalized Poisson
Distributions [Con89]:

�The Poisson probability model has been used in a very wide variety
of situations to describe the behavior of living beings as well as the
patterns observed in di�erent types of nonliving phenomena. The
Poisson distribution is generated by processes in which a large number
of cells, squares, leaves, petals, or intervals of time (e. g. seconds,
minutes, hours, days) are hit by a relatively small number of events
(births, deaths, blood cells, particles of nuclear decay, balls, etc.) such
that the occurrence or nonoccurrence of an event in that interval has
no e�ect on the further occurrences or nonoccurrences of events in
that interval and that the probability of two or more occurrences in
a short interval of time is almost zero; that is, a cell (or interval)
with lots of counts is as likely to get another count as a cell with
fewer counts or with no counts at all. This principle of randomness
implies that the individual organisms or events are scattered by chance
alone.�

Due to this characterization, the assumptions (A1)-(A4) in Assumption 3.1.3
make the Poisson distribution a reasonable approach for modeling SOLEs. The
only question is whether the concentration of SOLEs really is totally randomly
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distributed over the space available to them. However, the Poisson approach
has some mathematical advantages in SOLE context, e. g. the number of events
in an arbitrary subset during any mileage consequently is Poisson, too (see Ex-
ample 3.2.2), and the Poisson distribution is the unique distribution that makes
the number of SOLEs in disjoint ranges statistically independent (see Theorem
3.3.2). Figure 3.1 shows the Poisson distribution for three di�erent values of the
mean parameter λ.

Figure 3.1.: Probability mass functions of Poisson distribution.

3.5.1. The Index of Dispersion

Even if there are some mathematical advantages, the Poisson approach must be
veri�ed. For this attempt, the quotient of variance and expectation, the so-called
index of dispersion,

D[Nnum] =
Var[Nnum]

E[Nnum]
,

is a suitable test object, because a Poisson distribution is characterized by an
index of dispersion that is equal to 1 (see De�nition 2.4.2). Givenm independent
realizations n1, . . . , nm ∈ N0 of Nnum with

∑m
j=1 nj > 0 (m ∈ N), the ratio of

sample variance and sample mean,

1
m−1

∑m
j=1

(
nj − 1

m

∑m
i=1 ni

)2
1
m

∑m
j=1 nj

,



38 3. A Model for Supra Operating Load Events

is an evident estimator of D[Nnum], because sample mean and sample variance
are unbiased and consistent estimators of the expectation and the variance of
a random variable, respectively [LC98, p. 55]. Hence, according to Slutsky's
Theorem [Slu25, Cra62, pp. 254�255], the estimator above is consistent, too. A
hypothesis test can be constructed from the fact that the term∑m

j=1

(
Nj − 1

m

∑m
i=1 Ni

)2
1
m

∑m
j=1 Nj

is well-known to be approximately chi-squared distributed with (m− 1) degrees
of freedom if N1, . . . , Nm are statistically independent and identically Poisson
distributed random variables [Ben59, Hoe43, Sel65].
Now suppose, the observation does not consist of realizations of Nnum but of

N∗lnum with diverse values l (see Section 2.2). Again, let N1, N2, . . . be statisti-
cally independent random variables distributed according to Nnum, and let be
l1, . . . , lm̃ ∈ N (m̃ ∈ N). De�ne

Ñj :=

∑j
k=1

lk∑
i=1+

∑j−1
k=1

lk

Ni ∀j ∈ {1, . . . , m̃},

then each Ñj is as distributed as N
∗lj
num. Especially, they are not identically

distributed as long as the lj are not all equal to each other. If only realizations
of the Ñj are available, then the sample mean from above with m =

∑m̃
k=1 lk

can be calculated just as well, because

1

m

m∑
j=1

Nj =
1∑m̃
k=1 lk

m̃∑
j=1

Ñj .

However, the calculation of the sample variance is problematic, because in gen-
eral it is

m∑
j=1

(
Nj −

1

m

m∑
i=1

Ni

)2

6=
m̃∑
i=1

(
Ñi −

1∑m̃
k=1 lk

m̃∑
j=1

Ñj

)2

.

To �x this problem, the index of dispersion of Nnum must not be expressed
by expectation and variance of the nonobservable random variable Nnum but by
N∗l1num, N

∗l2
num, etc. For this purpose, generalize the de�nition of N∗lnum in De�-

nition 3.1.4 to the e�ect that the mileage l is allowed to be a random variable
L : (Ω,A,P)→ (N,P),

l→ L  N∗lnum → N∗Lnum =

L∑
i=1

Ni.
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L shall be statistically independent of all the Ni. It can be interpreted as the
random variable the mileages l1, l2, . . . are realizations of. It is worth trying to
replace the number of SOLEs per kilometer, Nnum, by the number of SOLEs
during L kilometers divided by the number of kilometers, N∗Lnum/L. The following
lemma is the result of this attempt. In addition, it handles another approach,
which becomes interesting in connection to the maximum likelihood estimation
in case of a negative binomially distributed Nnum (see Section 4.3.2, especially
Theorem 4.3.7).

3.5.1 Lemma. Suppose, L is an integrable random variable from a probability
space (Ω,A,P) to the measurable space (N,P), L : (Ω,A,P) → (N,P), which
is statistically independent of all other random variables. Then, the index of
dispersion of Nnum can be written as

D[Nnum] =
Var

[
N∗Lnum
L

]
E
[
N∗Lnum
L2

] and D[Nnum] =

E
[

(N∗Lnum)2

L

]
− E[N∗Lnum]2

E[L]

E
[
N∗Lnum
L

] .

Proof. Generally, the expectation of N∗Lnum/Lc with c ∈ R is

E
[
N∗Lnum
Lc

]
= E

[
E
[
N∗Lnum
Lc

∣∣∣L]] = E
[

1
Lc

∑L
i=1 E[Nnum|L]

]
= E

[
L1−c]E[Nnum] .

The variance of N∗Lnum/L is obtained from its conditional variance given L,

Var
[
N∗Lnum
L

∣∣∣L] =
1

L2

L∑
i=1

Var[Nnum|L] =
1

L
Var[Nnum] P - a. s.,

because the law of total variance [Wei05, pp. 385�368] states

Var
[
N∗Lnum
L

]
= E

[
Var

[
N∗Lnum
L

∣∣∣L]]+ Var
[
E
[
N∗Lnum
L

∣∣∣L]] = E
[

1
L

]
Var[Nnum] .

Finally, the expectation of (N∗Lnum)2
/L is

E
[

(N∗Lnum)2

L

]
= E

[
E
[

(N∗Lnum)2

L

∣∣∣∣L]] = E
[
LVar

[
N∗Lnum
L

∣∣∣L]+ LE
[
N∗Lnum
L

∣∣∣L]2]
= Var[Nnum] + E[L] E[Nnum]2 .

All these calculations ensure

Var
[
N∗Lnum
L

]
E
[
N∗Lnum
L2

] =
E
[

1
L

]
Var[Nnum]

E
[

1
L

]
E[Nnum]

=
Var[Nnum]

E[Nnum]
=

E
[

(N∗Lnum)2

L

]
− E[N∗Lnum]2

E[L]

E
[
N∗Lnum
L

] .

The index of dispersion D[Nnum] is exactly de�ned as the ratio of variance
Var[Nnum] and expectation E[Nnum].
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The indices of dispersion of Nnum and N∗Lnum/L are nearly equal to each other.
Only the additional factor 1/L in the denominator is a necessary correction term.
Since the mileage and the total number of SOLEs during this mileage is part of
the collected data (see Section 2.2), the index of dispersion can be estimated in
the following way: let (n1, l1), . . . , (nm, lm) ∈ N0×N (m ∈ N) be the observable
realizations of

(
N∗Lnum, L

)
, then estimate the variance and expectations in Lemma

3.5.1 by sample variance and sample mean as described above (see page 37), so
that evident consistent estimators of D[Nnum] are

D̂1 = D̂1

(
(nj , lj)1≤j≤m

)
:=

1
m−1

∑m
j=1

(
nj
lj
− 1

m

∑m
i=1

ni
li

)2

1
m

∑m
j=1

nj
lj2

D̂2 = D̂2

(
(nj , lj)1≤j≤m

)
:=

1
m

∑m
j=1

nj
2

lj
− 1

m

(
∑m
j=1 nj)

2∑m
j=1 lj

1
m

∑m
j=1

nj
lj

.

(3.6)

3.5.2. Con�dence Intervals of Sample Index of Dispersion

An estimator of D[Nnum] alone is not a complete instrument to decide whether
Nnum could be Poisson distributed or not. The distribution or, at least, an
approximate distribution of this estimator is necessary to get con�dence intervals
or to perform a hypothesis test. Since the data come from a large measurement
campaign, the sample size is very high. Therefore, it is su�cient to state the
approximate normal distribution the estimators D̂1 and D̂2 above (see Equation
(3.6)) converge to in law.

3.5.2 Theorem. Let (Lj)j∈N and (Nij)i,j∈N be statistically independent random
variables distributed according to Lj ∼ L and Nij ∼ Nnum for all i, j ∈ N, where
L is the same random variable as in Lemma 3.5.1. For all j ∈ N de�ne

NLj :=

Lj∑
i=1

Nij
(
∼ N∗Ljnum

)
.

Then, for large values of m, the estimators D̂1 and D̂2 of D[Nnum] are approxi-
mately normally distributed,

√
m
(
D̂1

(
(NLj , Lj)1≤j≤m

)
− D[Nnum]

)
d−−→ N

(
0, σiod

2)
√
m
(
D̂2

(
(NLj , Lj)1≤j≤m

)
− D[Nnum]

)
d−−→ N

(
0, τiod

2) for m→∞



3.5. Selecting the Distribution of Number of SOLEs per Kilometer 41

with

σiod
2 :=

E
[

1
L3

]
E
[

1
L

]2 (κ4[Nnum]

E[Nnum]2
− 2κ3[Nnum] Var[Nnum]

E[Nnum]3
+

Var[Nnum]3

E[Nnum]4

)

+ 2
E
[

1
L2

]
E
[

1
L

]2 Var[Nnum]2

E[Nnum]2
,

and

τiod
2 := E

[
1
L

](κ4[Nnum]

E[Nnum]2
− 2κ3[Nnum] Var[Nnum]

E[Nnum]3
+

Var[Nnum]3

E[Nnum]4

)
+ 2

Var[Nnum]2

E[Nnum]2
,

with the third- and fourth-order cumulants κ3 and κ4.

Proof. De�ne

V1 :=
1

m− 1

m∑
j=1

(
NLj
Lj
− 1

m

m∑
i=1

NLi
Li

)2

, E1 :=
1

m

m∑
j=1

NLj

Lj
2 ,

V2 :=
1

m

m∑
j=1

NLj
2

Lj
− 1

m

(∑m
j=1 NLj

)2∑m
j=1 Lj

, E2 :=
1

m

m∑
j=1

NLj
Lj

,

so that D̂1 = V1/E1 and D̂2 = V2/E2. Next, consider the function

f : R>0
2 → R : (x, y) 7−→ x

y
.

For both i ∈ {1, 2} a result of Cramér [Cra62, pp. 366�367] provides the asymp-
totic normality of f(Vi, Ei) if m is large,

D̂i =
Vi
Ei

= f(Vi, Ei)
a∼ N (µi, σi),

with mean

µi = f
(
E[Vi] ,E[Ei]

)∣∣∣
O(m−1)

=
E[Vi]

E[Ei]

∣∣∣∣
O(m−1)

and variance

σi
2 =

[ (
∂f
∂x

(
E[Vi] ,E[Ei]

))2 Var[Vi] +
(
∂f
∂y

(
E[Vi] ,E[Ei]

))2

Var[Ei]

+ 2 ∂f
∂x

(
E[Vi] ,E[Ei]

)
∂f
∂y

(
E[Vi] ,E[Ei]

)
Cov[Vi, Ei]

∣∣∣∣
O(m−3/2)

,
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where |O(m−1) and |O(m−3/2) mean that only those parts of the corresponding

terms are considered which are of a smaller order than m−1 and m−3/2 respec-
tively. Analyzing the partial derivatives yields

σi
2 =

[
Var[Vi]

E[Ei]
2 +

E[Vi]
2 Var[Ei]

E[Ei]
4 − 2E[Vi]Cov[Vi, Ei]

E[Ei]
3

∣∣∣∣∣
O(m−3/2)

.

The calculations of the expectations, variances and covariances are quite com-
plex. They can be looked up in the appendix (see Lemma A.4). However, it
holds

E[E1] = E
[

1
L

]
E[Nnum] ,

E[E2] = E[Nnum] ,

E[V1] = E
[

1
L

]
Var[Nnum] ,

E[V2] = Var[Nnum]− 1

m
Var[Nnum] ,

and

Var[E1] =
1

m

(
E
[

1
L3

]
Var[Nnum] + Var

[
1
L

]
E[Nnum]2

)
,

Var[E2] =
1

m
E
[

1
L

]
Var[Nnum] ,

Var[V1] =
1

m

(
E
[

1
L3

]
κ4[Nnum] +

(
3E
[

1
L2

]
− E

[
1
L

]2)Var[Nnum]2
)

+O
(
m−2) ,

Var[V2] =
1

m

(
E
[

1
L

]
κ4[Nnum] + 2Var[Nnum]2

)
+O

(
m−2) ,

and

Cov[V1, E1] =
1

m

(
E
[

1
L3

]
κ3[Nnum] + Var

[
1
L

]
Var[Nnum]E[Nnum]

)
+O

(
m−2) ,

Cov[V2, E2] =
1

m
E
[

1
L

]
κ3[Nnum] +O

(
m−2) .

So, it follows

σ1
2 =

σiod
2

m
, σ2

2 =
τiod

2

m
and µi =

Var[Nnum]

E[Nnum]
= D[Nnum] ∀i ∈ {1, 2},

and therefore

D̂1
a∼ N

(
D[Nnum] , σiod

2

m

)
and D̂2

a∼ N
(
D[Nnum] , τiod

2

m

)
,

which is just a transformation of the proposition.
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The asymptotic variances σiod2 and τiod2 look much alike, but because of

E
[

1
L3

]
E
[

1
L

]2 = E
[

1
L

] E
[

1
L3

]
E
[

1
L

]3 ≥ E
[

1
L

]
and

E
[

1
L2

]
E
[

1
L

]2 ≥ 1,

the asymptotic variance of D̂1, σiod2, is larger than the asymptotic variance of
D̂2, τiod2. In this sense, D̂2 is a better estimator than the intuitive estimator D̂1.

However, the variances σiod2 and τiod2 depend on unknown distribution param-
eters. The estimation of them needs estimates of the �rst three (non-central)
moments of 1/L and of the �rst four cumulants of Nnum (remember that ex-
pectation and variance are equal to the �rst and the second order cumulant
respectively, see Section 2.4.6).
Generally, if X = (X1, . . . , Xm) is a random vector consisting of statistically

independent and identically distributed random variables, the sample moments
µ̂n(X),

µ̂n(X) :=
1

m

m∑
j=1

Xj
n ∀n ∈ N,

are unbiased and consistent estimators of the (non-central) moments E[Xn]

[Cra62, p. 346]. On the other hand, the statistics k̂1, . . . , k̂4 de�ned by

k̂1(X) := µ̂1(X),

k̂2(X) :=
m

m− 1

(
µ̂2(X)− µ̂1(X)2) ,

k̂3(X) :=
m2

(m− 1)(m− 2)

(
µ̂3(X)− 3 µ̂2(X) µ̂1(X) + 2 µ̂1(X)3

)
,

k̂4(X) :=
m3

(m− 1)(m− 2)(m− 3)

(
m+1
m

µ̂4(X)− 4 m+1
m

µ̂3(X) µ̂1(X)

− 3 m−1
m

µ̂2(X)2 + 12 µ̂2(X) µ̂1(X)2 − 6 µ̂1(X)4

)
(3.7)

are unbiased and consistent estimators of the �rst four cumulants [Fis29, Cra62,
p. 352] (Kenney and Keeping [KK65, pp. 189�190] also give standard errors of
these so called k -statistics).
Since the variate Nnum is not observable, the cumulants of Nnum must be

expressed in terms of N∗Lnum and L, �rst (similar to the index of dispersion itself,
see Section 3.5.1). For this purpose, let us use the variate N∗Lnum/L, because
κ1

[
N∗Lnum/L

∣∣L] = E
[
N∗Lnum/L

∣∣L] = E[Nnum] is almost sure constant (see proof of
Lemma 3.5.1). Thus, it is straightforward to calculate the cumulants from their
conditional versions: homogeneity and additivity of the cumulants (see Section
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2.4.6) ensure

κn
[
N∗Lnum
L

∣∣∣L] =
1

Ln

L∑
i=1

κn[Nnum|L] =
1

Ln−1
κn[Nnum] ∀n ∈ {1, 2, 3, 4},

and so the law of total cumulants (see Section 2.4.6) yields

κn
[
N∗Lnum
L

]
= E

[
1

Ln−1

]
κn[Nnum] ∀n ∈ {1, 2, 3},

κ4

[
N∗Lnum
L

]
= E

[
1
L3

]
κ4[Nnum] + 3Var

[
1
L

]
Var[Nnum]2 .

(3.8)

Conversely, it must hold

κn[Nnum] =
κn
[
N∗Lnum
L

]
E
[

1
Ln−1

] − 3Var
[
N∗Lnum
L

]2 Var
[

1
L

]
E
[

1
L3

]
E
[

1
L

]2 1{4}(n) ∀n ∈ {1, 2, 3, 4}.

These expressions for the cumulants of Nnum can replace the respective terms
in σiod2 and τiod2 as de�ned in Theorem 3.5.2. Then, the cumulants of N∗Lnum/L
and the moments of 1/L can be estimated by the estimators µ̂n and k̂n as de�ned
above. As a result, the terms

σ̂iod
2 =

k̂4(U)− 3 k̂2(K)

µ̂1(K)2
k̂2(U)2

µ̂1(K)2 µ̂1(U)2
− 2 µ̂3(K) k̂3(U) k̂2(U)

µ̂2(K) µ̂1(K)3 µ̂1(U)3
+

µ̂3(K) k̂2(U)3

µ̂1(K)5 µ̂1(U)4

+
2 µ̂2(K) k̂2(U)2

µ̂1(K)4 µ̂1(U)2
,

τ̂iod
2 =

µ̂1(K) k̂4(U)− 3 k̂2(K)
µ̂1(K)

k̂2(U)2

µ̂3(K) µ̂1(U)2
− 2 k̂3(U) k̂2(U)

µ̂2(K) µ̂1(U)3
+

k̂2(U)3

µ̂1(K)2 µ̂1(U)4

+
2 k̂2(U)2

µ̂1(K)2 µ̂1(U)2
,

are consistent estimators of σiod2 and τiod
2 respectively, where K and U are

random vectors,

K :=
(

1
L1
, . . . , 1

Lm

)
and U :=

(
NL1
L1
, . . . , NLm

Lm

)
,

consisting of the variates (Lj)j∈N and (NLj)j∈N from Theorem 3.5.2.

Finally, Theorem 3.5.2 provides approximate con�dence intervals of D[Nnum]
based on the estimators D̂1, σ̂iod2 and D̂2, τ̂iod2. According to this theorem and
the consistency of σ̂iod2, it holds

1− α = lim
m→∞

P
(
−q1−α/2 ≤

√
m

σ̂iod
2

(
D̂1 − D[Nnum]

)
≤ q1−α/2

)
= lim
m→∞

P
(
D̂1 −

σ̂iod q1−α/2√
m

≤ D[Nnum] ≤ D̂1 +
σ̂iod q1−α/2√

m

)
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if q1−α/2 denotes the
(
1− α

2

)
100 % quantile of the standard normal distribu-

tion (α ∈ (0, 1)). The same relation holds for D̂2 and τ̂iod
2. This yields the

approximate con�dence intervals[
D̂1 −

σ̂iod q1−α/2√
m

, D̂1 +
σ̂iod q1−α/2√

m

]
,

[
D̂2 −

τ̂iod q1−α/2√
m

, D̂2 +
τ̂iod q1−α/2√

m

]
with con�dence level (1− α). Again, since σ̂iod2 is larger than τ̂iod2, the second
con�dence interval is smaller than the �rst one.

3.5.3. Hypothesis Test for Poisson Approach

Theorem 3.5.2 provides the asymptotic distributions of D̂1 and D̂2, the estima-
tors of the index of dispersion of Nnum (see Equation (3.6) on page 40). Since the
variances of this asymptotic distributions, σiod2 and τiod2, are expressed in terms
of the variates Nnum, it is easy to design a signi�cance test concerning the null
hypothesis `Nnum is Poisson distributed'. For this purpose, the next corollary
provides expressions for the variances σiod2 and τiod2 in the Poisson case.

3.5.3 Corollary. Let the situation be as in Theorem 3.5.2. If Nnum is Poisson
distributed, the variances of the limiting normal distributions are

σiod
2 =

2E
[

1
L2

]
E
[

1
L

]2 = 2 + 2CV
[

1
L

]2
and τiod

2 = 2.

Proof. All the cumulants of a Poisson random variable are equal to the mean
[LC98, p. 30].

The last corollary provides that τiod2 is not only smaller than σiod
2, but it

does not depends on the mileages as long as Nnum is Poisson distributed. Under
the hypothesis that Nnum is Poisson distributed, the estimator

D̂2 = D̂2

(
(nj , lj)1≤j≤m

)
:=

1
m

∑m
j=1

nj
2

lj
− 1

m

(
∑m
j=1 nj)

2∑m
j=1 lj

1
m

∑m
j=1

nj
lj

is, according to Theorem 3.5.2, (approximately) normally distributed with mean
1 and variance 2/m, because the index of dispersion D[Nnum] is equal to 1 and the
variance τiod2 is equal to 2 (see De�nition 2.4.2 and Corollary 3.5.3). In other
words:

lim
m→∞

P
(
−q1−α/2 ≤

√
m
2

(
D̂2 − 1

)
≤ q1−α/2

)
= 1− α,

where again q1−α/2 is the
(
1− α

2

)
100 % quantile of the standard normal distri-

bution. All these facts result in the following signi�cance test:
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Hypothesis test for Poisson approach

1. The observations (n1, l1), . . . , (nm, lm) ∈ N0 × N are realizations of(
N∗Lnum, L

)
.

2. Calculate the test statistic
√

m
2

(
D̂2 − 1

)
based on the observation.

3. If it is ∣∣∣√m
2

(
D̂2 − 1

)∣∣∣ > q1−α/2,

reject the null hypothesis that Nnum is Poisson distributed with signif-
icance level 1− α.

3.5.4. Overdispersion

If the hypothesis of a Poisson distributed Nnum is rejected, an alternative is
needed. It is important to distinguish two cases: Var[Nnum] is signi�cant larger
or smaller than E[Nnum].
If the variance of Nnum exceeds its expectation, Nnum is called to be overdis-

persed [IJ07]. Many authors [IJ07, JZ05, YHAV07, LSWY02, LWI05, and
references therein] propose the generalized Poisson distribution or the negative
binomial distribution as an alternative to the Poisson distribution when dealing
with overdispersion. Both distributions are related to the Poisson model. They
are so-called Poisson mixture distributions [GY20, JZ05]. Poisson mixture
means the following: suppose, there are random variables Y and W such that
Y |W =ω is a Poisson variate with mean ω (ω ∈ R>0). Then, the distribution of
Y is called to be a Poisson mixture distribution. If fW denotes the probability
density function of W , the distribution of Y is speci�ed through

P(Y = n) =

∫ ∞
0

P(Y = n |W = ω) fW (ω) dω =

∫ ∞
0

e−ω
ωn

n!
fW (ω) dω

for all n ∈ N0.
The generalized Poisson distribution as given in De�nition 2.4.2 was �rst intro-

duced by Consul and Jain [CJ73] and studied extensively by Consul [Con89]. Its
bene�t is that the generalized Poisson model not only deals with overdispersion
but with underdispersion, too. Consul [Con89, p. 3] declares that �the variance
of this generalized Poisson distribution model is greater than, equal to, or less
than the mean according to whether the second parameter, λ, is positive, zero,
or negative, and both mean and variance tend to increase or decrease in value as
θ increases or decreases�. Here, in De�nition 2.4.2, the generalized Poisson dis-
tribution is not used for negative values of λ. Nelson [Nel75] gives some reasons
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Figure 3.2.: Probability mass functions of negative binomial distribution.

for that. He indicates a cautious handling with negative values of λ, because the
distribution is truncated then and, more importantly, the generalized Poisson
model does not satisfy some properties of a distribution function, e. g., except
for a negligible proportion of choices for λ ∈ [−1, 0) and θ, the probabilities do
not add up to 1.
The reason for disqualifying the generalized Poisson distribution in context of

overdispersion, too, is the fact that the distribution of the number of events per
any range and mileage, Zl,A, is not in the same family as the distribution of Nnum

if Nnum is generalized Poisson distributed (see Example 3.2.2). In this case, Zl,A
is rather distributed according to a compound generalized Poisson distribution
as proposed by Ambagaspitiya and Balakrishnan [AB94]. But this distribution
family is very unwieldy in the sense that the probability mass function is not
expressible in closed form.
The situation with the negative binomial distribution is quite di�erent. As

shown in Example 3.2.2, if Nnum is negative binomial, then Zl,A is negative bi-
nomial, too. In contrast to the generalized Poisson distribution, where Joe and
Zhu [JZ05] proofed the Poisson mixture property but could not �nd the mixing
distribution, Greenwood and Yules [GY20] show that the negative binomial dis-
tribution is a Poisson mixture where the mixing distribution of the mean is a
gamma distribution. More precisely, they suppose fW to be the probability den-
sity function of a gamma distribution with parameters1 % and µ

%
(%, µ ∈ R>0),

Γ
(
%, µ

%

)
, and they calculate (with Y |W =ω ∼ Poi(ω) as de�ned above)

P(Y = n) =

∫ ∞
0

e−ω
ωn

n!

ω%−1 e
− %
µ
ω(

µ
%

)%
Γ(%)

dω =
Γ(%+ n)

n! Γ(%)

(
%

%+ µ

)%(
µ

%+ µ

)n

for all n ∈ N0. Hence, Y is negative binomially distributed.

1Greenwood and Yules [GY20] use a di�erent parametrization
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3.5.5. Underdispersion

Underdispersion, where the variance is less than the expectation, is more unusual
than overdispersion. Also in the present situation, it is more expectable that the
whole population consists of several subpopulations, which increases the variance
and so the dispersion. Ridout and Besbeas [RB04] give a short overview of several
models for underdispersed count data and compare them to their exponentially
weighted Poisson model. They mention other weighted Poisson models (Poisson
polynomial distribution, power law weighted Poisson distribution), the double
Poisson distribution, the changing birth rate distribution and the COM-Poisson
distribution. All these distributions are suitable for modeling underdispersion.
However, these models become more and more complicated and di�cult. Here,
the complexity would only increase as the counts are divided into subgroups (see
Proposition 3.2.1). In face of the fact that underdispersion is not expected, for
the sake of completeness a simple model for underdispersion shall be noticed
here, and that is the binomial model.
The binomial distribution is simple, the variance is always less than the ex-

pectation, Example 3.2.2 shows that Zl,A inherits the binomial distribution from
Nnum, and the binomial distribution is related to the Poisson distribution since
the Poisson Limit Theorem [Als05, p. 131] says that the Bin(r, q) distribution
approaches the Poi(λ) distribution if r approaches ∞ and q approaches 0 while
the term rq remains �xed at λ.

3.5.6. Binomial, Poisson and Negative Binomial Approach for
High Mileages

Let ZBin
l,A , ZPoi

l,A and ZNBin
l,A be as distributed as Zl,A (l ∈ N, A ∈ S) under the con-

straint of Nnum being binomially, Poisson and negative binomially distributed,
respectively. It is well-known that the binomial and the negative binomial dis-
tribution are very similar to the Poisson distribution if certain conditions hold.
The Poisson Limit Theorem [Als05, p. 131] says that

lim
r→∞
rq→λ

(
r

n

)
qn (1− q)r−n = e−λ

λn

n!
∀n ∈ N0.

On the other hand, the negative binomial distribution tends to the Poisson
distribution if the exponent tends to ∞ [FCW43],

lim
%→∞
µ→λ

Γ(%+ n)

n! Γ(%)

(
%

%+ µ

)%(
µ

%+ µ

)n
= e−λ

λn

n!
∀n ∈ N0.

The question is whether the distributions of ZBin
l,A , ZPoi

l,A and ZNBin
l,A di�er sig-

ni�cantly from each other if the mileage l is high. If, for instance, ZPoi
l,A and
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ZNBin
l,A became too similar to each other for large mileages, the negative bino-

mial distribution would not be an adequate model for overdispersion, because
the overdispersion of the data does not vanish for high mileages. The same
holds true for the binomial approach and underdispersion. Since the index of
dispersion of Zl,A is independent of the mileage though,

D[Zl,A] = 1 + pA
(
D[Nnum]− 1

)
(see Proposition 3.2.1), the binomial and the negative binomial distributions are
still appropriate approaches for modeling underdispersion and overdispersion,
respectively, even if the mileage l is high.

However, the situation is di�erent with the maximum SOLE M∗lsev. Let M
∗l
Bin,

M∗lPoi and M
∗l
NBin be random variables which are distributed according to M∗lsev

under the constraint of Nnum being binomially, Poisson and negative binomially
distributed, respectively, and suppose that there are series (al)l∈N ⊆ R>0 and
(bl)l∈N ⊆ R such that

P
(
M∗lPoi−bl

al
≤ t
)

l→∞−−−→ H(t)

for each continuity point of the non-degenerated cumulative distribution function
H. The Fisher�Tippett Theorem (see Theorem 2.4.3) provides that in this situ-
ation H must be the rescaled cumulative distribution function of the generalized
extreme value distribution with a speci�c parameter ξ. If the mileage is high,
the number of SOLEs is large, too, regardless of the variance of Nnum. Hence,
the behavior of M∗lsev is mostly determined by the distribution of the SOLEs,
Fsev. Therefore, it is expectable that (M∗lBin−bl)/al and (M∗lNBin−bl)/al converge in
distribution to the same generalized extreme value distribution.
The following theorem shows that, in fact, the distributions ofM∗lBin andM

∗l
NBin

can be approximated by the distribution of M∗lPoi if the mileage l is high.

3.5.4 Theorem. Let be l, r ∈ N, q ∈ (0, 1) and λ, %, µ ∈ R>0. Suppose, M∗lBin,
M∗lPoi and M

∗l
NBin are random variables with the following distributions:

� M∗lBin is as distributed as M∗lsev under the constraint Nnum ∼ Bin(r, q),

� M∗lPoi is as distributed as M∗lsev under the constraint Nnum ∼ Poi(λ),

� M∗lNBin is as distributed as M∗lsev under the constraint Nnum ∼ NBin(%, µ).

Then it holds:

1. If λ = rq, then

0 ≤ P
(
M∗lPoi ≤ t

)
− P

(
M∗lBin ≤ t

)
≤ 1

rle
∀t ∈ R.



50 3. A Model for Supra Operating Load Events

2. If λ = µ, then

0 ≤ P
(
M∗lNBin ≤ t

)
− P

(
M∗lPoi ≤ t

)
≤ 1

%le
∀t ∈ R.

3. If µ = rq, then

0 ≤ P
(
M∗lNBin ≤ t

)
− P

(
M∗lBin ≤ t

)
≤
(

1

r
+

1

%

)
1

le
∀t ∈ R.

Proof. Let us have a look at the functions f : [0, 1] → R and g : R≥0 → R

de�ned by

f(x) :=

{
e−rlx − erl log(1−x), if x ∈ [0, 1)

e−rl, if x = 1.
and g(x) := e−%l log(1+x) − e−%lx.

From

lim
x↗1

f(x) = e−rl = f(1), g(0) = 0 = lim
x→∞

g(x), x ≥ log(1 + x) ∀x ∈ R>−1

it follows that both f and g are nonnegative and continuous, and it follows that
there are points x0 ∈ [0, 1], y0 ∈ R≥0 such that

f(x0) = max
x∈[0,1]

f(x) and g(y0) = max
x∈R≥0

g(x).

For all x in the domains of f and g respectively, the following two equivalences
hold: [

df
dx

(x) = 0 ⇔ x = 1− erl(log(1−x)+x)
]
,[

dg
dx

(x) = 0 ⇔ x = e−%l(log(1+x)−x) − 1
]
.

This implies

f(x0) =

{(
1− erl(log(1−x0)+x0)

)
e−rlx0 , if x0 ∈ [0, 1)

e−rl, if x0 = 1

}
= x0 e−rlx0 ,

g(y0) =
(

e−%l(log(1+y0)−y0) − 1
)

e−%ly0 = y0 e−%ly0 .

The maximizer of the continuous function x 7→ x e−rlx is 1
rl
, which can be veri�ed

by discovering its derivative x 7→ (1− rlx) e−rlx.
All in all, both f and g are nonnegative and do not exceed (rle)−1 and (%le)−1

respectively. Eventually, consequences of Proposition 3.4.2 and Example 3.4.3
are

P
(
M∗lPoi ≤ t

)
− P

(
M∗lBin ≤ t

)
= f

(
q(1− Fsev(t))

)
1R≥0

(t) ∀t ∈ R
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if λ = rq, and

P
(
M∗lNBin ≤ t

)
− P

(
M∗lPoi ≤ t

)
= g
(
µ
%

(1− Fsev(t))
)
1R≥0

(t) ∀t ∈ R

if λ = µ. The third statement follows from the �rst two results if it is chosen
λ = µ = rq.

With the results of Theorem 3.5.4 it is evident that both (M∗lBin−bl)/al and
(M∗lNBin−bl)/al converge in distribution to the same generalized extreme value dis-
tribution as (M∗lPoi−bl)/al does. Of course, the exact extreme value parameter ξ
of the limiting distribution and the correct selection of the series (al)l∈N and
(bl)l∈N depend on the distribution Fsev of the SOLEs.
As an example, let the shifted SOLE (Ssev − usev) be generalized Pareto dis-

tributed,
Fsev(t) = FGPar(ξ,β)(t− usev) ∀t ∈ R,

where FGPar(ξ,β) is the cumulative distribution function of the generalized Pareto
distribution with shape ξ and scale β (ξ ∈ R, β ∈ R>0, motivation for this
example see Section 3.6). For each l ∈ N de�ne

al := β(λl)ξ and bl :=

{
usev + β (λl)ξ−1

ξ
, if ξ 6= 0,

usev + β log(λl) , if ξ = 0,

where λ is the expectation value of Nnum. With these de�nitions it holds

Fsev(alt+ bl) = FGPar(ξ,β)(alt+ bl − usev) =

1− (1+ξt)
− 1
ξ

λl
, if ξ 6= 0

1− e−t

λl
, if ξ = 0.

With help of Example 3.4.3 this yields

P
(
M∗lPoi−bl

al
≤ t
)

= eλl(Fsev(alt+bl)−1)
1R≥0

(alt+ bl)

= e−λl 1[0,usev)(alt+ bl) + FGEV(ξ)(t) 1R≥usev (alt+ bl)

= e−λl 1[
cl−

usev
al

,cl

)(t) + FGEV(ξ)(t) 1R≥cl (t)

l→∞−−−→ FGEV(ξ)(t) ∀t ∈ R,

where

cl :=

{
(λl)−ξ−1

ξ
, if ξ 6= 0,

− log(λl) , if ξ = 0.

Eventually, Theorem 3.5.4 provides

FGEV(ξ)(t)−
1

rle
≤ P

(
M∗lBin−bl

al
≤ t
)
≤ FGEV(ξ)(t) ∀t ∈ R≥cl
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and

FGEV(ξ)(t) ≤ P
(
M∗lNBin−bl

al
≤ t
)
≤ FGEV(ξ)(t) +

1

%le
∀t ∈ R≥cl .

Consequently, with regard to the maximum SOLE, Nnum can be assumed to be
Poisson distributed if l is so large that (rle)−1 and (%le)−1 are negligible small,
where r and % are the number of trials and the exponent of a possible alternative
binomial and negative binomial distribution, respectively.

3.5.7. Conclusion

The distribution of Nnum will be selected in the following way: A priori, Nnum is
assumed to be Poisson distributed, Nnum ∼ Poi(λ). According to the hypothesis
test in Section 3.5.3, evaluate the estimator D̂2 (see Equation (3.6) on page 40)
and take a decision as follows:∣∣∣√m

2

(
D̂2 − 1

)∣∣∣ ≤ q1−α/2  Nnum remains Poisson distributed,√
m
2

(
D̂2 − 1

)
< −q1−α/2  Nnum is underdispersed,√

m
2

(
D̂2 − 1

)
> q1−α/2  Nnum is overdispersed,

where q1−α/2 denotes the
(
1− α

2

)
100 % quantile of the standard normal dis-

tribution (α ∈ (0, 1)). If Nnum is identi�ed to be underdispersed, it shall be
binomially distributed, Nnum ∼ Bin(r, q). Otherwise, if Nnum is identi�ed to be
overdispersed, choose a negative binomial distribution, Nnum ∼ NBin(%, µ).
There are three factual reasons to prefer the estimator D̂2 to D̂1 (see Equation

(3.6) on page 40):

1. The asymptotic variance of D̂2 is smaller than the asymptotic variance of
D̂1 (see Theorem 3.5.2).

2. In contrast to D̂1, under the null hypothesis the asymptotic distribution
of D̂2 is independent of the distribution of the mileage L (see Corollary
3.5.3).

3. If the negative binomial distribution is chosen due to the validity of the

relation
√

m
2

(
D̂2 − 1

)
> q1−α/2, then the maximum likelihood estimators

of the distribution parameters exist (see Theorem 4.3.7).
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3.6. Selecting the Distribution of Severity of SOLEs

The selection of a convenient model for the severity of a SOLE is motivated by
the Pickands�Balkema�de Haan Theorem 2.4.4. By de�nition, a SOLE Ssev is
a random variable in a peaks-over-threshold model. The codomain of Ssev, S,
consists of all real values above the severity threshold usev (see De�nition 3.1.1).
Since the threshold usev marks events with very large severities, the Pickands�
Balkema�de Haan Theorem is applicable to the distribution of Ssev. For this
reason the SOLE Ssev, or rather the shifted one, Ssev − usev, is chosen to be
generalized Pareto distributed.
Actually, the generalized Pareto distribution consists of three di�erent types

of distributions. The types are characterized by ξ ∈ R>0, ξ = 0 and ξ ∈ R<0.
This classi�cation is based on the connection to the generalized extreme value
distribution which goes back to the Pickands�Balkema�de Haan Theorem. The
generalized extreme value distribution consists of a Fréchet type (ξ ∈ R>0), a
Gumbel type (ξ = 0) and a Weibull type (ξ ∈ R<0) (see Section 2.4.7).
De Haan and Ferreira [HF06, p. 19] present a criterion to check whether a

distribution is in the Weibull domain of attraction. According to that, a cumu-
lative distribution function F is in the domain of attraction of the extreme value
distribution GEV(ξ) with ξ ∈ R<0 if and only if

xF <∞ and lim
t↘0

1− F (xF − tx)

1− F (xF − t)
= x

− 1
ξ ∀x ∈ R>0,

where xF := sup{x ∈ R |F (x) < 1}. This means that Fsev cannot be in the
Weibull domain of attraction if

P(Ssev ≥ t) > 0 ∀t ∈ R.
In fact, any load that occur in tra�c and has an impact on the vehicle and its

components is bounded from above, at last from the total energy of the universe.
However, the load magnitudes which are counted here come from maneuvers that
(mostly) must not damage the car or its components. The situation is similar
to a plant in a high greenhouse: The size of the plant is bounded from above
by the rooftop of the greenhouse. Actually, the rooftop is far higher than the
biggest plant in this greenhouse ever could be. So, it can be assumed that there
are no external barriers for the plant growth.
Like the plant in the large greenhouse, the loads in this experiment do not come

up to their upper border. P(Ssev ≥ t) shall be positive for any border t ∈ R.
Hence, Fsev cannot be in the Weibull domain of attraction, and a negative ξ can
be excluded.
Summarized, the cumulative distribution function of the SOLE Ssev is chosen

to be

Fsev(t) = FGPar(ξ,β)(t−usev) = 1R≥usev (t)·

1−
(

1 + ξ
β

(t− usev)
)− 1

ξ
, if ξ > 0,

1− e
− 1
β

(t−usev)
, if ξ = 0,
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Figure 3.3.: Probability density functions of generalized Pareto distribution.

for all t ∈ R, where FGPar(ξ,β) is the cumulative distribution function of the
generalized Pareto distribution with nonnegative shape ξ and (positive) scale
β (ξ ∈ R≥0, β ∈ R>0). Figure 3.3 shows some probability density functions
dFGPar(ξ,β)

dt
of the generalized Pareto distribution.



4. Parameter Estimation

In order to use the parametric model presented in Chapter 3, the
values of the model parameters must be quanti�ed. Using the max-
imum likelihood method these parameters shall be estimated based
on data as described in Chapter 2. Section 4.1 recapitulates the
fundamental de�nitions from Chapter 3 and prepares them for this
chapter. Section 4.2 creates the mathematical framework for this
chapter. It introduces two statistical experiments on the basis: the
counting model, which excludes the observation of the maximum
SOLEs, and the counting-maximum model, which also takes account
the maximum SOLEs. In addition, it calculates the corresponding
likelihood functions and the Fisher information. In Section 4.3 the
parameter estimation of the parameters concerning the number of
SOLEs is done, while Section 4.4 presents the parameter estimation
of the parameters concerning the severity of a SOLE in the counting
model. Finally, Section 4.5 estimates the severity parameters in the
counting-maximum model.

4.1. Preliminary

According to the experimental design described in Section 2.2, in this chapter
m shall be the number of vehicles providing data as mentioned (m ∈ N). Each
of these vehicles has its own partitioning of the detection range S = R>usev ,

Aj1 := (usev, tj1], Aj2 := (tj1, tj2], . . . , Ajd := (tj,d−1,∞)

with class limits usev = tj0 < tj1 < . . . < tj,d−1 < tjd = ∞ for all j ∈ N≤m.
In the following, not only the absolute load magnitude but the load relative to
the severity threshold usev is required. Therefore, de�ne for every j ∈ N≤m the
relative class limits

sjk := tjk − usev ∀k ∈ {0, . . . , d− 1} and sjd =∞.
The data consists of the observation

l1 z11 · · · z1d x1

l2 z21 · · · z2d x2

...
...

. . .
...

...
lm zm1 · · · zmd xm
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where, for all j ∈ N≤m and k ∈ N≤d, lj is the mileage of vehicle j, zjk is number
of SOLEs observed within the interval Ajk = (tj,k−1, tjk] by vehicle j, and xj is
the maximum SOLE observed by vehicle j.
To be able to analyze these data, let us recall the basic random variables

de�ned in De�nition 3.1.1, De�nition 3.1.2, De�nition 3.1.4 and De�nition 3.4.1:

� supra operating load event (SOLE) Ssev with codomain S = R>usev and
cumulative distribution function Fsev (usev ∈ R>0),

� number of SOLEs per kilometer Nnum with cumulative distribution func-
tion Fnum,

� number of SOLEs during l kilometers N∗lnum and number of SOLEs in range
A during l kilometers Zl,A (l ∈ N, A ⊆ S measurable),

� maximum SOLE per kilometer Msev and maximum SOLE during l kilo-
meters M∗lsev (l ∈ N).

In this terminology, zjk is a realization of the random variable Zlj ,Ajk and xj is

a realization of M
∗lj
sev . The observations of distinct vehicles are assumed to be

independent of each other. However, as seen in Theorem 3.3.2, the number of
SOLEs in one class is not in general independent of the number of SOLEs in
another range. For this reason, de�ne the random vectors1 Z v(1), . . . ,Z v(m) as
being statistically independent and distributed as follows:

Z v(j) :=
(
Zv(j)1 , . . . , Zv(j)d

)
∼
(
Zlj ,Aj1 , . . . , Zlj ,Ajd

)
∀j ∈ N≤m.

The observation of vehicle j, (zj1, . . . , zjd), can be interpreted as realization of
Z v(j) (j ∈ N≤m).
In the same way de�ne the random variables1 Mv(1), . . . ,Mv(m) as being sta-

tistically independent and distributed according to the maximum SOLE during
the corresponding mileage,

Mv(j) ∼M
∗lj
sev ∀j ∈ N≤m,

so that the observation xj is a realization ofMv(j) (j ∈ {1, . . . ,m}). In addition,

it shall hold that
(
Mv(j),Z v(j)

)
∼
(
M
∗lj
sev , Zlj ,Aj1 , . . . , Zlj ,Ajd

)
for all j ∈ N≤m.

Finally, the total number of observed SOLEs per vehicle1 shall be

Nv(j) :=
d∑
k=1

Zv(j)k ∼ N
∗lj
num ∀j ∈ N≤m.

1The notation v(j) indicates vehicle j : Z v(j), Mv(j) and Nv(j) are observations con-
cerning vehicle j.
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4.2. Statistical Experiment

The experiment on the basis can be described by two statistical models depend-
ing on whether the maximum values are part of the observation. The model that
only take account the counts of the SOLEs is called counting model, while
the model that also includes the maximum values shall be named counting-
maximum model.

4.2.1. Counting Model

The �rst model only take account of the counts of SOLEs, z = (zjk) 1≤j≤m
1≤k≤d

.

Since z is a realization of the random matrix
(
Z v(j)

)
1≤j≤m, the formal statistical

experiment (according to Section 2.4.2) is

EC :=

(
N0

m×d, P0
m×d,

(
Pϑ
(
(Z v(j))1≤j≤m ∈ ·

) )
ϑ∈Θ

)
.

The likelihood function of this statistical experiment is denoted by LC, i. e.

LC(ϑ; z) := Pϑ
(⋂m

j=1

{
Z v(j) = (zj1, . . . , zjd)

})
∀ϑ ∈ Θ.

`C shall be the corresponding log-likelihood function,

`C(ϑ; z) := log(LC(ϑ; z)) ∀ϑ ∈ Θ.

The parameter space Θ consists of the parameters that specify the distributions
of the number of SOLEs per kilometer, Θnum, and of the severity of the SOLEs,
Θsev,

Θ := Θnum ×Θsev.

According to Section 3.6, the severity of a SOLE is assumed to be general-
ized Pareto distributed with nonnegative shape and positive scale. Hence, the
parameter space Θsev is set to be

Θsev := R≥0 ×R>0.

The structure of Θnum depends on the chosen distribution of Nnum. According
to Section 3.5, possible models for Nnum are the binomial, the Poisson and the
negative binomial distribution. In the Poisson case the parameter is allowed to
be positive and real-valued, in the negative binomial case both the exponent and
the mean are positive and real-valued. In the general binomial case the number of
trials is a natural number and the probability of success lies within the interval
(0, 1). However, the numerical results (see Section 5.7) provide a very small
value for the observed number of SOLEs per kilometer, E[Nnum]� 1. This fact
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is consistent with the assumption that SOLEs are accompanied by extreme high
load magnitudes, and thus they are very rare. If Nnum is binomially distributed
with r trials and success probability q (r ∈ N, q ∈ (0, 1)), the expectation of
Nnum is

rq = E[Nnum]� 1.

So, the higher the value of r, the smaller is the value of q. If q is too low, the
index of dispersion of Nnum,

D[Nnum] =
Var[Nnum]

E[Nnum]
=
rq(1− q)

rq
= 1− q,

becomes (almost) equal to one. Consequently, Nnum can just as well be assumed
to be Poisson distributed. Therefore, the value of r should be rather low to be
able to distinguish between the binomial and the Poisson approach. Moreover,
the estimation of the trial parameter is not elementary. Olkin, Petkau and Zidek
[OPZ81] point out that both the moment method estimator and the maximum
likelihood estimator of r are not robust. The construction and evaluation of a
more robust estimator is laborious anyway. In consideration of the fact that the
binomial model only is a theoretical model (underdispersion is not expected, see
Section 3.5.5), the search for an adequate estimator of r is disregarded. Instead,
r shall be �xed as being as low as possible, which means r = 1. The binomial
distribution with only one trial is also called Bernoulli distribution [JKK05].
Eventually, the parameter space of the distribution that speci�es the number of
SOLEs per kilometer is

Θnum :=


(0, 1), if Nnum is Bernoulli,

R>0, if Nnum is Poisson,

R>0 ×R>0, if Nnum is negative binomial.

All together, the parameter space is given by

Θ = Θnum×Θsev =


(0, 1)×

(
R≥0 ×R>0

)
, if Nnum is Bernoulli,

R>0 ×
(
R≥0 ×R>0

)
, if Nnum is Poisson,(

R>0 ×R>0

)
×
(
R≥0 ×R>0

)
, if Nnum is neg. binomial.

Unless otherwise speci�ed, an arbitrary element of Θ is denoted by ϑ. Each
ϑ ∈ Θ is put together of an element from Θnum and an element from Θsev. Again,
unless otherwise speci�ed, the elements of Θnum are named ν, and the elements
of Θsev are denoted by ς. Furthermore, any ς ∈ Θsev consists of the shape ξ
and the scale β of the generalized Pareto distribution, and any ν ∈ Θnum stands
for the mean parameter µ of the distribution of Nnum and, if Nnum is negative
binomially distributed, for the exponent %, too. Summarized, any parameter
ϑ ∈ Θ is build up as follows:

ϑ = (ν, ς) =

{(
µ, (ξ, β)

)
, if Nnum ∼ Bin(1, µ), Nnum ∼ Poi(µ),(

(%, µ), (ξ, β)
)
, if Nnum ∼ NBin(%, µ).

(4.1)
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4.2.2. Counting-Maximum Model

This model also includes the observed maximum SOLEs x = (xj)1≤j≤m. Here,
the statistical experiment is

ECM :=

((
N0

d × S
)m
,
(
P0

d ⊗S
)m
,
(
Pϑ
(
(Z v(j),Mv(j))1≤j≤m ∈ ·

) )
ϑ∈Θ

)
with the same parameter space Θ as in the counting model above. Hence, the
likelihood function LCM of this model is

LCM(ϑ; z, x) := dm

dx1...dxm
Pϑ
(⋂m

j=1

{
Mv(j) ≤ xj , Z v(j) = (zj1, . . . , zjd)

})
for all ϑ ∈ Θ. The corresponding log-likelihood function is denoted by `CM,

`CM(ϑ; z, x) := log(LCM(ϑ; z, x)) ∀ϑ ∈ Θ.

4.2.3. Log-Likelihood Functions

Both Section 3.5 and Section 3.6 establish reasonable approaches for the dis-
tribution of the total number of SOLEs, Fnum, and for the distribution of the
severity of any SOLE, Fsev. However, the parameters of these introduced distri-
butions must be estimated based on data. The maximum likelihood method is
an appropriate technique for this purpose. As mentioned in section 2.4.4, this
method manages the circumstance that the data are interval censored, that the
numbers of observed events in distinct ranges are not identically distributed and
probably not statistically independent.
As the name suggests, the maximum likelihood method needs the (log-)like-

lihood function of the relevant statistical experiment. The following proposi-
tion identi�es the log-likelihood functions of the counting model, `C, and of the
counting-maximum model, `CM. Of particular note is that the parameters of
Fnum and Fsev can be segregated.

4.2.1 Proposition. Suppose, (z, x) is a realization of
(
Z v(j),Mv(j)

)
1≤j≤m,

z = (zjk) 1≤j≤m
1≤k≤d

∈ N0
m×d and x = (xj)1≤j≤m ∈ ({0} ∪R>usev)m.

Let k1, . . . , km be the classes containing the maximum SOLEs x1, . . . , xm,

kj :=

d∑
k=1

k 1Ajk (xj) ∀j ∈ N≤m.
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Then, for all parameters ϑ = (ν, ς) ∈ Θnum×Θsev, the log-likelihood functions of
the counting model, `C, and of the counting-maximum model, `CM, are speci�ed
through

`C(ϑ; z) = `num(ν; z) + `Csev(ς; z) + C(z),

`CM(ϑ; z, x) = `num(ν; z) + `CMsev(ς; z, x) +D(z),

where

`num(ν; z) :=

m∑
j=1

log
(
Pϑ
(
N
∗lj
num =

∑d
k=1 zjk

))
,

`Csev(ς; z) :=

m∑
j=1

d∑
k=1

zjk log
(
pAjk

)
,

`CMsev(ς; z, x) :=
∑

1≤j≤m
j:(kj>0)

kj−1∑
k=1

zjk log
(
pAjk

)
+ (zjkj − 1) log

(
p(tj,kj−1,xj ]

)
+ log

(
dFsev
dxj

(xj)
) ,

C(z) :=

m∑
j=1

log

(
(
∑d
k=1 zjk)!∏d
k=1

zjk!

)
, D(z) := C(z) +

m∑
j=1

log
(
zjkj

)
,

and, according to De�nition 3.1.1,

pAjk = Fsev(tjk)− Fsev(tj,k−1) and p(tj,kj−1,xj ] = Fsev(xj)− Fsev
(
tj,kj−1

)
.

Proof. Since the random vectors Z v(1), . . . ,Z v(d) are statistically independent,
the log-likelihood function `C of the counting model (see Section 4.2.1) looks like

`C(ϑ; z) = log(LC(ϑ; z)) =

m∑
j=1

log
(
Pϑ
(
Zlj ,Aj1 = zj1, . . . , Zlj ,Ajd = zjd

))
for all ϑ ∈ Θ. The rest follows directly from the special structure of the proba-
bility term, which can be looked up in Theorem 3.2.3.
The random vectors

(
Z v(1),Mv(1)

)
, . . . ,

(
Z v(m),Mv(m)

)
are statistically inde-

pendent, too, and so the logarithm of the likelihood function LCM of the counting-
maximum model (see Section 4.2.2) is

`CM(ϑ; z, x) = log(LCM(ϑ; z, x))

=

m∑
j=1

log
(

d
dxj

Pϑ
(
M
∗lj
sev ≤ xj , Zlj ,Aj1 = zj1, . . . , Zlj ,Ajd = zjd

))
for all ϑ ∈ Θ. The results of Theorem 3.4.4 and Theorem 3.2.3 �nish the proof.
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The result of the last proposition shows that the parameters ν and ς can be
estimated separately from each other. The maximum likelihood estimator of ν
is the maximizer of `num( · ; z) in both the counting model and the counting-
maximum model. On the other hand, just look for the maximizer of `Csev( · ; z)
or `Csev( · ; z, x) and the maximum likelihood estimator of ς is found.

4.2.4. Fisher Information of the Counting Model

Section 2.4.3 introduces the Fisher information of a statistical experiment and
illustrates the link to the variances of estimators. Since the distributions of some
estimators cannot be identi�ed exactly, the Fisher information is an appropriate
tool to approximate the variance of at least asymptotically e�cient estimators.
IC shall denote the Fisher information matrix in the counting model EC. Ac-

cording to the conventional notation of the parameters ϑ ∈ Θ in Section 4.2.1
(see Equation (4.1) on page 58), with Z :=

(
Z v(j)

)
1≤j≤m the Fisher information

is de�ned by

IC(ϑ) =


Eϑ

[
∂`C
∂%

∂`C
∂%

(ϑ; Z)

]
Eϑ

[
∂`C
∂%

∂`C
∂µ

(ϑ; Z)

]
Eϑ

[
∂`C
∂%

∂`C
∂ξ

(ϑ; Z)

]
Eϑ

[
∂`C
∂%

∂`C
∂β

(ϑ; Z)

]
Eϑ

[
∂`C
∂µ

∂`C
∂%

(ϑ; Z)

]
Eϑ

[
∂`C
∂µ

∂`C
∂µ

(ϑ; Z)

]
Eϑ

[
∂`C
∂µ

∂`C
∂ξ

(ϑ; Z)

]
Eϑ

[
∂`C
∂µ

∂`C
∂β

(ϑ; Z)

]
Eϑ

[
∂`C
∂ξ

∂`C
∂%

(ϑ; Z)

]
Eϑ

[
∂`C
∂ξ

∂`C
∂µ

(ϑ; Z)

]
Eϑ

[
∂`C
∂ξ

∂`C
∂ξ

(ϑ; Z)

]
Eϑ

[
∂`C
∂ξ

∂`C
∂β

(ϑ; Z)

]
Eϑ

[
∂`C
∂β

∂`C
∂%

(ϑ; Z)

]
Eϑ

[
∂`C
∂β

∂`C
∂µ

(ϑ; Z)

]
Eϑ

[
∂`C
∂β

∂`C
∂ξ

(ϑ; Z)

]
Eϑ

[
∂`C
∂ξ

∂`C
∂ξ

(ϑ; Z)

]


if Nnum is negative binomially distributed2. Otherwise, just omit the �rst line
and the �rst row. The following theorem introduces the Fisher information in
detail. Take also note of Remark 4.2.3 following the theorem.

4.2.2 Theorem. For all p ∈ [0, 1], x, y ∈ R>0, the term Jp(x, y) shall denote
the (regularized) incomplete beta function [AS65, p. 263] evaluated at p, x, y,

Jp(x, y) :=

∫ p
0
tx−1(1− t)y−1 dt∫ 1

0
tx−1(1− t)y−1 dt

.

Suppose, for all i ∈ {1, 2}, x, t ∈ R≥0, the term ϕi(x, t) means

ϕi(x, t) := 1{2}(i) + 1{1}(i) ·

{
1
x

(
log(1 + xt)

(
1 + 1

xt

)
− 1
)
, if xt > 0,

t
2
, if xt = 0,

and it shall be

aijk(ξ, β) := sjk

(
1 +

ξ

β
sj,k−1

)
ϕi
(
ξ
β
, sjk

)
− sj,k−1

(
1 +

ξ

β
sjk

)
ϕi
(
ξ
β
, sj,k−1

)

bjk(ξ, β) :=


(
1+ ξ

β
sjk

) 1
ξ −

(
1+ ξ

β
sj,k−1

) 1
ξ

(β+ξsjk)−2 (β+ξsj,k−1)−2 , if ξ > 0,(
e

1
β
sjk − e

1
β
sj,k−1

)
β4, if ξ = 0,

2at ξ = 0 ∂

∂ξ
means the right partial derivative
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and

c(%, µ) :=

m∑
j=1

∞∑
n=1

(
n−1∑
x=0

1

%+ x
lj

)2

Γ(%lj + n)

n! Γ(%lj)

(
%

%+ µ

)%lj ( µ

%+ µ

)n

−
m∑
j=1

(
∞∑
x=0

J µ
%+µ

(x+ 1, %lj)

%+ x
lj

)2

+

(
m∑
j=1

(
∞∑
x=0

J µ
%+µ

(x+ 1, %lj)

%+ x
lj

+ lj log
(

%
%+µ

)))2

.

The Fisher information matrix in the counting model EC is

IC(ϑ) =

(
Inum(ν) 0

0 Isev(µ, ξ, β)

)
∀ϑ ∈ Θ,

where

Isev(µ, ξ, β) =

m∑
j=1

d−1∑
k=1

µlj
bjk(ξ, β)

 a1jk(ξ, β)2 a1jk(ξ, β) a2jk(ξ, β)

a1jk(ξ, β) a2jk(ξ, β) a2jk(ξ, β)2


and

Inum(ν) =



∑m
j=1 lj

µ(1−µ)
, if Nnum ∼ Bin(1, µ),

∑m
j=1 lj

µ
, if Nnum ∼ Poi(µ),c(%, µ)− µ

∑m
j=1 lj

%(%+µ)
0

0
%
∑m
j=1 lj

µ(%+µ)

 , if Nnum ∼ NBin(%, µ).

Proof. � calculation of Eϑ
[(
∂`C
∂µ

(ϑ;Z )
)2]

:

Whether Nnum is Bin(1, µ), Poi(µ) or NBin(%, µ) distributed, Proposition 4.2.1
and Lemma 4.3.1 yield

∂`C
∂µ

(ϑ;Z ) = ∂`num
∂µ

(ν;Z ) =
µ

Varϑ[Nnum]

m∑
j=1

(
Nv(j)

µ
− lj

)
.

This means that

Eϑ
[
∂`C
∂µ

(ϑ;Z )
]

=
µ

Varϑ[Nnum]

m∑
j=1

(
µlj
µ
− lj

)
= 0,

and hence

Eϑ
[(

∂`C
∂µ

(ϑ;Z )
)2
]

= Varϑ
[
∂`num
∂µ

(ν;Z )
]

=
Varϑ

[∑m
j=1 Nv(j)

]
Varϑ[Nnum]2

=

∑m
j=1 lj

Varϑ[Nnum]
.
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� calculation of Eϑ
[(
∂`C
∂%

(ϑ;Z )
)2]

:

In case of Nnum ∼ NBin(%, µ), again, Proposition 4.2.1 and Lemma 4.3.1 provide

∂`C
∂%

(ϑ;Z ) = ∂`num
∂%

(%, µ;Z )

=

m∑
j=1

Nv(j)−1∑
x=0

1

%+ x
lj

+ lj log
(

%
%+µ

)
− µ

%+ µ

(
Nv(j)

µ
− lj

) .

According to this, the sought-after expectation is

Eϑ
[(
∂`C
∂%

(ϑ;Z )
)2]

= Eϑ
[
∂`C
∂%

(ϑ;Z )
]2

+ Varϑ
[
∂`C
∂%

(ϑ;Z )
]

=

(
m∑
j=1

(
Eϑ
[∑Nv(j)−1

x=0
1

%+ x
lj

]
+ lj log

(
%

%+µ

)))2

+

m∑
j=1

(
Varϑ

[∑Nv(j)−1

x=0
1

%+ x
lj

]
+ Varϑ

[
Nv(j)

%+µ

])

− 2

m∑
j=1

Covϑ

[∑Nv(j)−1

x=0
1

%+ x
lj

,
Nv(j)

%+µ

]
.

The (regularized) incomplete beta function from above satis�es

x∑
n=0

Pϑ
(
Nv(j) = n

)
= 1− J µ

%+µ
(x+ 1, %lj) ∀x ∈ N0

[AS65, p. 945]. Hence, the expectation of the random sum is

Eϑ
[∑Nv(j)−1

x=0
1

%+ x
lj

]
=

∞∑
n=1

n−1∑
x=0

Pϑ
(
Nv(j) = n

)
%+ x

lj

=
∞∑
x=0

Pϑ
(
Nv(j) > x

)
%+ x

lj

=

∞∑
x=0

J µ
%+µ

(x+ 1, %lj)

%+ x
lj

,

and the variance of this term is

Varϑ

[∑Nv(j)−1

x=0
1

%+ x
lj

]
= Eϑ

[(∑Nv(j)−1

x=0
1

%+ x
lj

)2
]
− Eϑ

[∑Nv(j)−1

x=0
1

%+ x
lj

]2

=

∞∑
n=1

(
n−1∑
x=0

1

%+ x
lj

)2

Pϑ
(
Nv(j) = n

)
−

(
∞∑
x=0

J µ
%+µ

(x+ 1, %lj)

%+ x
lj

)2

.
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The other variance term obviously is

Varϑ
[
Nv(j)

%+µ

]
=
µlj
(

1 + µ
%

)
(%+ µ)2

=
µlj

%(%+ µ)
.

Finally, the covariance term is also equal to µlj/%(%+µ), because on the one hand

Eϑ
[∑Nv(j)−1

x=0

Nv(j)

%+ x
lj

]
=

∞∑
n=1

n−1∑
x=0

nPϑ
(
Nv(j) = n

)
%+ x

lj

= µlj

∞∑
x=0

1−
∑x
n=0

n
µlj

Pϑ
(
Nv(j) = n

)
%+ x

lj

,

and on the other hand

Eϑ
[
Nv(j)

]
Eϑ
[∑Nv(j)−1

x=0
1

%+ x
lj

]
= µlj

∞∑
n=1

n−1∑
x=0

Pϑ
(
Nv(j) = n

)
%+ x

lj

= µlj

∞∑
x=0

1−
∑x
n=0 Pϑ

(
Nv(j) = n

)
%+ x

lj

,

which means

Covϑ

[∑Nv(j)−1

x=0
1

%+ x
lj

,
Nv(j)

%+µ

]
=

µlj
%+ µ

∞∑
x=0

x∑
n=0

(
1− n

µlj

)
Pϑ
(
Nv(j) = n

)
%+ x

lj

.

All what remains to be done is to verify that the double sum on the right-hand
side is equal to 1/%. For this purpose, de�ne

f(x) :=
1

%+ x
lj

x∑
n=0

(
1− n

µlj

) Pϑ
(
Nv(j) = n

)
Pϑ
(
Nv(j) = x

) ∀x ∈ N0.

Obviously, it is f(0) = 1/%, and, provided that f(x0) = 1/% for an x0 ∈ N0,

f(x0 + 1) = f(x0)
Pϑ
(
Nv(j) = x

) (
%+ x

lj

)
Pϑ
(
Nv(j) = x+ 1

) (
%+ x+1

lj

) +
1

%+ x+1
lj

(
1− x+ 1

µlj

)

=
(%+ µ)(x+ 1)

%µ(%lj + x+ 1)
+

µlj − (x+ 1)

µ(%lj + x+ 1)
=

1

%
.

So, in fact, it holds f ≡ 1/%, and this leads to

1

%
=

∞∑
x=0

f(x)Pϑ
(
Nv(j) = x

)
=

∞∑
x=0

x∑
n=0

(
1− n

µlj

)
Pϑ
(
Nv(j) = n

)
%+ x

lj

.
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� calculation of Eϑ
[
∂`C
∂µ

(ϑ;Z ) ∂`C
∂%

(ϑ;Z )
]
:

When calculating the expectation of
(
∂`C
∂µ

(ϑ;Z )
)2

above, it emerged that the

expectation of ∂`C
∂µ

(ϑ;Z ) vanishes. This means

Eϑ
[
∂`C
∂µ

(ϑ;Z ) ∂`C
∂%

(ϑ;Z )
]

= Covϑ
[
∂`C
∂µ

(ϑ;Z ), ∂`C
∂%

(ϑ;Z )
]

=

m∑
j=1

Covϑ

[
%Nv(j)

µ(%+µ)
,
∑Nv(j)−1

x=0
1

%+ x
lj

− Nv(j)

%+µ

]

=
%

µ

m∑
j=1

(
Covϑ

[∑Nv(j)−1

x=0
1

%+ x
lj

,
Nv(j)

%+µ

]
− Varϑ

[
Nv(j)

%+µ

])
When calculating the expectation of

(
∂`C
∂%

(ϑ;Z )
)2

above, both the covariance
term and the variance term are turned out to be equal to µlj/%(%+µ). Hence,

Eϑ
[
∂`C
∂µ

(ϑ;Z ) ∂`C
∂%

(ϑ;Z )
]

= 0.

� calculation of Eϑ
[(
∂`C
∂ξ

(ϑ;Z )
)2]

:

The partial derivative of `C with respect to ξ is according to Proposition 4.2.1
given by

∂`C
∂ξ

(ϑ;Z ) =
∂`Csev
∂ξ

(ς;Z ) =

m∑
j=1

d∑
k=1

Zv(j)k

∂
∂ξ
pAjk

pAjk
.

Remember that the intervals Ajk span the whole severity space S (see Section
4.1), and so the probabilities pAjk add up to one,

∑d
k=1 pAjk = 1 for all j ∈ N≤m.

With this fact and the expectation value of Zv(j)k (see Proposition 3.2.1) it is
easy to see that the expectation of ∂`C

∂ξ
(ϑ;Z ) vanishes,

Eϑ
[
∂`C
∂ξ

(ϑ;Z )
]

=

m∑
j=1

d∑
k=1

µlj
∂
∂ξ
pAjk = µ

m∑
j=1

lj
∂
∂ξ

d∑
k=1

pAjk = µ

m∑
j=1

lj
∂
∂ξ

1 = 0.

Hence, the expectation of
(
∂`C
∂ξ

(ϑ;Z )
)2

is equal to the variance of ∂`C
∂ξ

(ϑ;Z ),

Eϑ
[(

∂`C
∂ξ

(ϑ;Z )
)2
]

= Varϑ
[
∂`C
∂ξ

(ϑ;Z )
]

=

m∑
j=1

d∑
k=1

(
Varϑ

[
Zv(j)k

∂
∂ξ
pAjk

pAjk

]
+ 2

d∑
i=k+1

Covϑ

[
Zv(j)k

∂
∂ξ
pAjk

pAjk
, Zv(j)i

∂
∂ξ
pAji

pAji

])
.

Proposition 3.2.1 and Lemma 3.3.1 provide expressions for the variance term,

Varϑ

[
Zv(j)k

∂
∂ξ
pAjk

pAjk

]
=

(
∂
∂ξ
pAjk

pAjk

)2 (
µlj pAjk + lj pAjk

2(Varϑ[Nnum]− µ
))
,
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and for the covariance term,

Covϑ

[
Zv(j)k

∂
∂ξ
pAjk

pAjk
, Zv(j)i

∂
∂ξ
pAji

pAji

]
= ∂

∂ξ
pAjk

∂
∂ξ
pAji lj

(
Varϑ[Nnum]− µ

)
,

respectively. Hence, with the relation
∑d
k=1

∂
∂ξ
pAjk = 0 it follows

Eϑ
[(

∂`C
∂ξ

(ϑ;Z )
)2
]

=

m∑
j=1

d∑
k=1

µlj

(
∂
∂ξ
pAjk

)2

pAjk
.

The last expression can be transformed into a more convenient form without a
derivation. For that purpose, remember that

∂
∂ξ
pAjk =

∂

∂ξ

(
Fsev(tjk)−Fsev(tj,k−1)

)
=

∂

∂ξ

(
1−Fsev(tj,k−1)

)
− ∂

∂ξ

(
1−Fsev(tjk)

)
,

where Fsev is the cumulative probability function of a shifted generalized Pareto
distribution (see Section 3.6),

1− Fsev(tjk) =


(

1 + ξ
β

(tjk − u)
)− 1

ξ
=
(

1 + ξ
β
sjk
)− 1

ξ
, if ξ > 0,

e
− 1
β

(tjk−u)
= e
− 1
β
sjk , if ξ = 0.

The derivative of this term with respect to ξ can be found in the appendix (see
Lemma A.1),

∂

∂ξ

(
1− Fsev(tjk)

)
=
(
1− Fsev(tjk)

)︸ ︷︷ ︸
fjk

sjk
β2 + ξβsjk

ϕ1

(
ξ
β
, sjk

)
︸ ︷︷ ︸

hjk

.

Since fjd = 0 for all j ∈ N≤m, with this notation it holds

d∑
k=1

(
∂
∂ξ
pAjk

)2

pAjk
=

d−1∑
k=1

(fj,k−1 hj,k−1 − fjk hjk)2

fj,k−1 − fjk
+

(fj,d−1 hj,d−1)2

fj,d−1

=

d−1∑
k=1

(hjk − hj,k−1)2

1
fjk
− 1

fj,k−1

with

hjk − hj,k−1 =
a1jk(ξ, β)

(β + ξsjk) (β + ξsj,k−1)
,

1

fjk
− 1

fj,k−1
=

bjk(ξ, β)

(β + ξsjk)2 (β + ξsj,k−1)2
,
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where aijk(ξ, β) and bjk(ξ, β) are de�ned in the proposition of this theorem.
Eventually, one gets

Eϑ
[(

∂`C
∂ξ

(ϑ;Z )
)2
]

= µ

m∑
j=1

lj

d∑
k=1

(
∂
∂ξ
pAjk

)2

pAjk
= µ

m∑
j=1

lj

d−1∑
k=1

a1jk(ξ, β)2

bjk(ξ, β)
.

� calculation of Eϑ
[(
∂`C
∂β

(ϑ;Z )
)2]

:

The calculation of the expectation of
(
∂`C
∂β

(ϑ;Z )
)2

works very similar to the

calculation of the expectation of
(
∂`C
∂ξ

(ϑ;Z )
)2

above. All that needs to be done

is change ∂
∂ξ

to ∂
∂β

in the calculations. This results in changing ϕ1 to ϕ2 and,
eventually, changing a1jk(ξ, β) to a2jk(ξ, β).

� calculation of Eϑ
[
∂`C
∂ξ

(ϑ;Z ) ∂`C
∂β

(ϑ;Z )
]
:

Also here, the calculation works very similar to the calculation of the expectation
of
(
∂`C
∂ξ

(ϑ;Z )
)2
. With this strategy one gets

Eϑ
[(

∂`C
∂β

(ϑ;Z )
)2
]

= µ

m∑
j=1

lj

d∑
k=1

∂
∂ξ
pAjk

∂
∂β
pAjk

pAjk

= µ

m∑
j=1

lj

d−1∑
k=1

a1jk(ξ, β) a2jk(ξ, β)

bjk(ξ, β)
.

� calculation of Eϑ
[
∂`C
∂µ

(ϑ;Z ) ∂`C
∂ξ

(ϑ;Z )
]
:

When calculating the expectation of
(
∂`C
∂µ

(ϑ;Z )
)2

above, it turns out that the

expectation of ∂`C
∂µ

(ϑ;Z ) vanishes. Hence,

Eϑ
[
∂`C
∂µ

(ϑ;Z ) ∂`C
∂ξ

(ϑ;Z )
]

= Covϑ
[
∂`C
∂µ

(ϑ;Z ), ∂`C
∂ξ

(ϑ;Z )
]

=
m∑
j=1

d∑
k=1

∂
∂ξ
pAjk

pAjk

Covϑ
[
Nv(j), Zv(j)k

]
Varϑ[Nnum]

.

By de�nition, Nv(j) is the sum of the random variables Zv(j)1 , . . . , Zv(j)d . Since
the variances and covariances of the Zv(j)k are known (see Proposition 3.2.1 and
Lemma 3.3.1), for a �xed k the covariance of Nv(j) and Zv(j)k is

Covϑ
[
Nv(j), Zv(j)k

]
=

d∑
i=1

Covϑ
[
Zv(j)i , Zv(j)k

]
= lj pAjkVarϑ[Nnum] .

Consequently, it holds

m∑
j=1

d∑
k=1

∂
∂ξ
pAjk

pAjk

Covϑ
[
Nv(j), Zv(j)k

]
Varϑ[Nnum]

=

m∑
j=1

lj

d∑
k=1

∂
∂ξ
pAjk =

m∑
j=1

lj
∂
∂ξ

1 = 0.
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� calculation of Eϑ
[
∂`C
∂µ

(ϑ;Z ) ∂`C
∂β

(ϑ;Z )
]
:

Just change the operator ∂
∂ξ

to ∂
∂β

in the calculation of Eϑ
[
∂`C
∂µ

(ϑ;Z ) ∂`C
∂β

(ϑ;Z )
]

above.

� calculation of Eϑ
[
∂`C
∂%

(ϑ;Z ) ∂`C
∂ξ

(ϑ;Z )
]
:

When calculating the expectation of
(
∂`C
∂ξ

(ϑ;Z )
)2

above, it emerged that the

expectation of ∂`C
∂ξ

(ϑ;Z ) is equal to 0. This provides the equality of

Eϑ
[
∂`C
∂%

(ϑ;Z ) ∂`C
∂ξ

(ϑ;Z )
]

= Covϑ
[
∂`C
∂%

(ϑ;Z ), ∂`C
∂ξ

(ϑ;Z )
]

=

m∑
j=1

d∑
k=1

(
Covϑ

[∑Nv(j)−1

x=0
1

%+ x
lj

, Zv(j)k

∂
∂ξ
pAjk

pAjk

]
− Covϑ

[
Nv(j)

%+µ
, Zv(j)k

∂
∂ξ
pAjk

pAjk

])
.

When calculating the expectation of ∂`C
∂µ

(ϑ;Z ) ∂`C
∂ξ

(ϑ;Z ) above, it can be seen
that the covariance of Nv(j) and Zv(j)k is equal to lj pAjkVarϑ[Nnum]. Therefore,
the second covariance expression vanishes,

d∑
k=1

Covϑ

[
Nv(j)

%+µ
, Zv(j)k

∂
∂ξ
pAjk

pAjk

]
=
lj Varϑ[Nnum]

%+ µ

∂

∂ξ

d∑
k=1

pAjk = 0.

Also the �rst covariance terms add up to 0. To establish this, remember that
Zv(j)k given Nv(j) is binomially distributed with Nv(j) trials and success proba-
bility pAjk (see proof of Proposition 3.2.1). Therefore

Eϑ
[
Zv(j)k

]
= Eϑ

[
Eϑ
[
Zv(j)k

∣∣Nv(j)

]]
= pAjkEϑ

[
Nv(j)

]
and

Eϑ
[∑Nv(j)−1

x=0

Zv(j)k
%+ x

lj

]
=Eϑ

[∑Nv(j)−1

x=0

Eϑ[Zv(j)k
|Nv(j)]

%+ x
lj

]
= pAjkEϑ

[∑Nv(j)−1

x=0

Nv(j)

%+ x
lj

]
.

All this results in

d∑
k=1

Covϑ

[∑Nv(j)−1

x=0
1

%+ x
lj

, Zv(j)k

∂
∂ξ
pAjk

pAjk

]
=Covϑ

[∑Nv(j)−1

x=0
1

%+ x
lj

, Nv(j)

]
∂

∂ξ

d∑
k=1

pAjk

which is equal to 0.

� calculation of Eϑ
[
∂`C
∂%

(ϑ;Z ) ∂`C
∂β

(ϑ;Z )
]
:

Very similar to the evaluation of the expectation of ∂`C
∂%

(ϑ;Z ) ∂`C
∂ξ

(ϑ;Z ), also
here the sought-after expectation value is 0.
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The calculation of the Fisher information matrix in the last theorem turns
out that the parameter group concerning the number of SOLEs, ν = ((%), µ), is
orthogonal to the parameter group concerning the severity of a SOLE, ς = (ξ, β),
i. e. the respective entries of the Fisher information matrix are 0 [CR87]. This
is consistent with the fact that ν and ς can be estimated separately as shown in
Proposition 4.2.1.
Besides, in the negative binomial case, the mean µ and the exponent % are

orthogonal, too. Consequently, if (%̂, µ̂) is an asymptotically e�cient estimator
of (%, µ) in the sense of Section 2.4.3, then %̂ and µ̂ are asymptotically indepen-
dent, because jointly normally distributed and uncorrelated random variables
are statistically independent [Als05, p. 141].
The following remark gives an idea of how to simplify the term c(%, µ) in the

last theorem.

4.2.3 Remark. Numerical calculations support the assumption that the follow-
ing relation holds:

log(1− p) +

∞∑
x=0

Jp(x+ 1, y)

y + x
= 0 ∀p ∈ (0, 1), ∀y ∈ R>0, (4.2)

where Jp(x+ 1, y) denotes the (regularized) incomplete beta function evaluated
at p, x+ 1 and y (see Theorem 4.2.2). If this relation is true, the term c(%, µ) in
Theorem 4.2.2 can be written as

c(%, µ) =
m∑
j=1

∞∑
n=1

(
n−1∑
x=0

1

%+ x
lj

)2

Γ(%lj + n)

n! Γ(%lj)

(
%

%+ µ

)%lj ( µ

%+ µ

)n

− log
(

1 + µ
%

)2
m∑
j=1

lj
2.

In addition, one may use the relation

n−1∑
x=0

1

%+ x
lj

= lj

n−1∑
x=0

1

%lj + x
= lj

(
ψ(%lj + n)− ψ(%lj)

)
with digamma function ψ, ψ(x) = d

dx
log(Γ(x)) [AS65, p. 258].

At least for all y ∈ N, Equation (4.2) can be veri�ed by dint of the relation

∞∑
x=0

Jp(x+ 1, y)

y + x
=

∞∑
x=0

1

y + x

y−1∑
n=0

(
x+ y

n

)
px+y−n (1− p)n

=

∞∑
x=0

(
px+y

x+ y
+

y−1∑
n=1

(
x+ y

n

)
px+y−n (1− p)n

x+ y

)
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for all p ∈ (0, 1) and y ∈ N [AS65, p. 944]. By comparison of the coe�cients of
the px it can be shown that

∞∑
x=0

y−1∑
n=1

(
x+ y

n

)
px+y−n (1− p)n

x+ y
=

y−1∑
x=1

px

x
∀p ∈ (0, 1), ∀y ∈ N.

Therefore, it follows for all p ∈ (0, 1) and y ∈ N that

∞∑
x=0

Jp(x+ 1, y)

y + x
=

∞∑
x=0

px+y

x+ y
+

y−1∑
x=1

px

x
=

∞∑
x=1

px

x
= − log(1− p) ,

where the last equation sign holds since
∑∞
x=1

−px/x is a series expansion of
log(1− p) [AS65, p. 68].

4.3. Estimating the Number of SOLEs per Kilometer

In Section 4.2.3 it is argued that the distribution of the number of SOLEs per
kilometer can be estimated without considering their severities. According to
Proposition 4.2.1, the maximum likelihood estimator of the parameter of Fnum,
ν, is the maximizer of the function

`num(ν; z) =

m∑
j=1

log
(
Pϑ
(
N
∗lj
num =

∑d
k=1 zjk

))
.

In case of a binomial, Poisson and negative binomially distributed Nnum, the
variate N

∗lj
num is binomial, Poisson and negative binomial, too,

Nnum ∼ Bin(1, µ), Poi(µ), NBin(%, µ)

⇒ N
∗lj
num ∼ Bin(lj , µ), Poi(µlj), NBin(%lj , µlj),

because N
∗lj
num is just the sum of lj statistically independent random variables

which are all distributed according to Nnum (see De�nition 3.1.4). In these three
cases it is easy to write out the function `num. The next lemma collects the
particular versions of `num.

4.3.1 Lemma. Let z = (zjk) 1≤j≤m
1≤k≤d

∈ N0
m×d be a realization of

(
Z v(j)

)
1≤j≤m.

Apply the shortcuts

nj :=

d∑
k=1

zjk, n :=

m∑
j=1

nj and l :=

m∑
j=1

lj .
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1. If Nnum is Bernoulli distributed with success probability µ (µ ∈ (0, 1)), then

`num(µ; z) =

m∑
j=1

log

((
lj
nj

))
+ n log(µ) + (l − n) log(1− µ) ,

and therefore

∂`num
∂µ

(µ; z) =
1

1− µ

(
n

µ
− l
)
.

2. If Nnum is Poisson distributed with mean µ (µ ∈ R>0), then

`num(µ; z) = −µl + n log(µ) +

m∑
j=1

log
(
lj
nj

nj !

)
,

and therefore

∂`num
∂µ

(µ; z) =
n

µ
− l.

3. If Nnum is negative binomially distributed with exponent % and mean µ
(%, µ ∈ R>0), then

`num(%, µ; z) =

m∑
j=1

log
(

Γ(%lj+nj)

nj ! Γ(%lj)

)
+%l log(%)+n log(µ)−(%l+n) log(%+ µ) ,

and therefore

∂`num
∂%

(%, µ; z) =

m∑
j=1

nj−1∑
x=0

1

%+ x
lj

+ l log
(

%
%+µ

)
− µ

%+ µ

(
n

µ
− l
)

=

m∑
j=1

lj
(
ψ(%lj + nj)− ψ(%lj)

)
+ l log

(
%

%+µ

)
− µ

%+ µ

(
n

µ
− l
)

∂`num
∂µ

(%, µ; z) =
%

%+ µ

(
n

µ
− l
)

with digamma function ψ, ψ(x) = d
dx

log(Γ(x)), [AS65, p. 258].

Proof. Just substitute the probability mass functions of binomial, Poisson and
negative binomial distribution as given in De�nition 2.4.2 into the de�nition of
`num from Theorem 4.2.1.
In case of the negative binomial distribution consider that [AS65, p. 258]

ψ(%lj + nj) = ψ(%lj) +

nj−1∑
x=0

1

%lj + x
∀j ∈ N≤m.

In the following two sections 4.3.1 and 4.3.2 let us concretize form and char-
acteristics of the maximum likelihood estimators of µ and %.
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4.3.1. Estimating the Mean µ of the Number of SOLEs per
Kilometer

Remember, the number of SOLEs per kilomter Nnum is assumed to be Bernoulli,
Poisson or negative binomially distributed (see Section 3.5 and Section 4.2.1),
Nnum ∼ Bin(1, µ), Poi(µ), NBin(%, µ), with µ, % ∈ R>0, except in the binomial
case where µ ∈ (0, 1). In all three cases the parametrization is chosen such that µ
denotes the expectation of Nnum. The intuition suggests that the total number
of observed SOLEs divided by the total number of kilometers is an adequate
estimator of the mean number of possible events per kilometer. The following
theorem con�rms this intuition.

4.3.2 Theorem. Let z = (zjk) 1≤j≤m
1≤k≤d

∈ N0
m×d be a realization of

(
Z v(j)

)
1≤j≤m

with z 6≡ 0. Suppose, Nnum is either Bernoulli, Poisson or negative binomially
distributed with unknown mean µ, more precisely

Nnum ∼ Bin(1, µ) or Nnum ∼ Poi(µ) or Nnum ∼ NBin(%, µ).

Then, the maximum likelihood estimator µ̂m of µ based on z exists in case of the
Poisson and negative binomial distribution, and it exists in case of the binomial
distribution if and only if

∑m
j=1 lj >

∑m
j=1

∑d
k=1 zjk. If the maximum likelihood

estimator of µ based on z exists, it is given by

µ̂m(z) =

∑m
j=1

∑d
k=1 zjk∑m

j=1 lj
.

Proof. Since Lemma 4.3.1 holds, the maximum likelihood estimator of µ must
satisfy the following equivalent equations:(∑m

j=1

∑d
k=1 zjk

µ̂m
−

m∑
j=1

lj

)
= 0 ⇔ µ̂m =

∑m
j=1

∑d
k=1 zjk∑m

j=1 lj
.

Furthermore, the sign of the derivative of `num with respect to the mean µ
changes from positive to negative at this point. Hence, µ̂m as given in the
proposition of this theorem must be the maximum likelihood estimator of µ.
If the number of observed SOLEs,

∑m
j=1

∑d
k=1 zjk, exceeds the number of

kilometers,
∑m
j=1 lj , the equation above does not have a solution satisfying

µ̂m ∈ (0, 1). Hence, in this situation there does not exist a maximum likeli-
hood estimator in the binomial case.

The last Theorem 4.3.1 reveals the possibility that the maximum likelihood
estimator of µ does not exist if Nnum is Bernoulli distributed. However, this
is only a theoretical problem. In Section 4.2.1 it is argued that the Bernoulli
approach is chosen, because the mean number of SOLEs per kilometer is expected
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to be always by many orders of magnitude below 1. Practically, the number of
observed SOLEs will not exceed the number of kilometers. Section 5.7 gives a
quantitative con�rmation of this assumption.
Since the structure of the maximum likelihood estimator µ̂m of µ is quite sim-

ple, it is easy to verify some characteristics of it. The next theorem provides that
µ̂m is a consistent, e�cient and uniformly minimum-variance unbiased estimator.

4.3.3 Theorem. Let the situation be as in Theorem 4.3.2 with the conventional
notation of the parameters according to Section 4.2.1 (see Equation (4.1) on page
58) and Z :=

(
Z v(j)

)
1≤j≤m, then it holds:

1. µ̂m is an unbiased estimator of µ,

Eϑ[µ̂m(Z )] = µ ∀ϑ ∈ Θ.

2. The variance of µ̂m(Z ) is given by

Varϑ[µ̂m(Z )] =
Varϑ[Nnum]∑m

j=1 lj
=
µ(1 + wϑ µ)∑m

j=1 lj
∀ϑ ∈ Θ,

where

wϑ :=


−1, if Nnum ∼ Bin(1, µ),

0, if Nnum ∼ Poi(µ),
1
%
, if Nnum ∼ NBin(%, µ).

3. µ̂m is a consistent estimator of µ,

µ̂m(Z )
P−−→ µ for m→∞ ∀ϑ ∈ Θ.

4. µ̂m is an uniformly minimum-variance unbiased estimator (UMVUE) of
µ, i. e. it is unbiased and for any other unbiased estimator µ̃ of µ it holds

Varϑ[µ̂m(Z )] ≤ Varϑ[µ̃(Z )] ∀ϑ ∈ Θ.

5. µ̂m is an e�cient estimator of µ, i. e. it is unbiased and it achieves equality
on the information inequality (see Section 4.2.4) in the reduced model where
all parameters are kept constant but the mean µ.

Proof. 1./2.: For all j ∈ N≤m, the sum Nv(j) =
∑d
k=1 Zv(j)k is distributed

according to the total number of events during lj kilometers, Nv(j) ∼ N
∗lj
num.

Since the observations of di�erent vehicles are mutually statistically independent,
it follows

m∑
j=1

d∑
k=1

Zv(j)k ∼


Bin
(∑m

j=1 lj , µ
)
, if Nnum ∼ Bin(1, µ),

Poi
(
µ
∑m
j=1 lj

)
, if Nnum ∼ Poi(µ),

NBin
(
%
∑m
j=1 lj , µ

∑m
j=1 lj

)
, if Nnum ∼ NBin(%, µ).
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Hence,

Eϑ[µ̂m(Z )] =
Eϑ
[∑m

j=1

∑d
k=1 Zv(j)k

]
∑m
j=1 lj

=
µ
∑m
j=1 lj∑m
j=1 lj

= µ,

and

Varϑ[µ̂m(Z )] =
Varϑ

[∑m
j=1

∑d
k=1 Zv(j)k

]
(∑m

j=1 lj
)2 =

µ(1 + wϑ µ)∑m
j=1 lj

.

3.: Chebyshev's inequality [UC11] in combination with the result of the second
statement in this theorem ensures that for all ε > 0 it holds

Pϑ
(∣∣µ̂m(Z )− µ

∣∣ > ε
)
≤ Varϑ[µ̂m(Z )]

ε2
=
µ(1 + wϑ µ)

ε2
∑m
j=1 lj

m→∞−−−−→ 0.

4.: With the notation nj :=
∑d
k=1 zjk for all j ∈ N≤m and the statistical

independence of the Nv(j) one gets

Pϑ
(⋂m

j=1

{
Nv(j) = nj

})
=

m∏
j=1

Pϑ
(
Nv(j) = nj

)
= B(ν) eQ(ν)T (n1,...,nm) h(n1, . . . , nm, (%)),

where T (n1, . . . , nm) :=
∑m
j=1 nj and

B(ν) :=


(1− µ)

∑m
j=1 lj ,

e−µ
∑m
j=1 lj ,(

%
%+µ

)%∑m
j=1 lj

,

Q(ν) :=


log
(

µ
1−µ

)
, if Fnum ∼ Bin(1, µ),

log(µ) , if Fnum ∼ Poi(µ),

log
(

µ
%+µ

)
, if Fnum ∼ NBin(%, µ),

h(n1, . . . , nm, (%)) :=


∏m
j=1

(
lj
nj

)
, if Fnum ∼ Bin(1, µ),∏m

j=1

lj
nj

nj !
, if Fnum ∼ Poi(µ),∏m

j=1

Γ(%lj+nj)
nj ! Γ(%lj)

, if Fnum ∼ NBin(%, µ).

As can be seen in Section 4.2.4, even ifNnum is assumed to be negative binomially
distributed, µ and % are orthogonal, and so the parameters can be estimated
separately [CR87]. Therefore, % can be treated as known and constant. Hence,
the underlying family of distributions is a one-dimensional exponential family,
which ensures that T is a complete and su�cient statistic [LC98, pp. 39�42].
With the chosen notation, µ̂m(Z ) is a function of T ,

µ̂m(Z ) =
1∑m
j=1 lj

T

((∑d
k=1 Zv(j)k

)
1≤j≤m

)
,
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and µ̂m(Z ) is indeed an UMVUE of µ [LC98, p. 88].

5.: Theorem 4.2.2 provides that the Fisher information with regard to the
parameter µ is

Eϑ
[(

∂`C
∂µ

(ϑ;Z )
)2
]

= Eϑ
[(

∂`CM
∂µ

(ϑ;Z )
)2
]

=

∑m
j=1 lj

µ(1 + wϑ µ)
.

But the term on the right-hand side is exactly the inverse of the variance of µ̂m
as can be seen in the second statement of this theorem.

In other words, the last theorem teaches that the maximum likelihood esti-
mator µ̂m estimates the true mean µ correctly on average, that the variance of
µ̂m is inversely proportional to the total mileage, that µ̂m tends to the correct
mean µ in probability, and that there is no other unbiased estimator with an
uniformly smaller variance. In this sense µ̂m is an optimal estimator.

For quantifying the accuracy of estimate by µ̂m, a con�dence interval of µ
based on µ̂m is needed. An interval is called con�dence interval of param-
eter µ with level (1 − α) (α ∈ (0, 1)) if it contains the real value µ with
probability (1 − α) [UC11]. Since the sample size m is rather large, it is su�-
cient to calculate an approximate con�dence interval. As can be seen in the proof
of the next theorem, the central limit theorem [LC98, p. 58] ensures that µ̂m is
approximately normally distributed. This fact yields an approximate con�dence
interval.

4.3.4 Theorem. Let the situation be as in Theorem 4.3.2 with the conventional
notation of the parameters according to Section 4.2.1 (see Equation (4.1) on
page 58) and Z :=

(
Z v(j)

)
1≤j≤m. For a given α ∈ (0, 1), let q1−α/2 be the(

1− α
2

)
100 % quantile of the standard normal distribution. Then, for all ϑ ∈ Θ

and α ∈ (0, 1), the maximum likelihood estimator µ̂m of µ satis�es

lim
m→∞

Pϑ
(∣∣µ̂m(Z )− µ

∣∣ ≤ q1−α/2√ µ̂m(Z) (1+ŵm(Z) µ̂m(Z))∑m
j=1 lj

)
= 1− α,

where

ŵm :=


−1, if Nnum ∼ Bin(1, µ),

0, if Nnum ∼ Poi(µ),
1
%̂m
, if Nnum ∼ NBin(%, µ),

and %̂m denotes the maximum likelihood estimator of % (see Theorem 4.3.7).
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Proof. For the following triangular array construction

N11 N12 . . . N1l1

N21 N22 . . . N2l1 N2,l1+1 . . . N2,l1+l2

...
...

...
...

...
. . .

Nm1 Nm2 . . . Nml1 Nm,l1+1 . . . Nm,∑m
j=1 lj

...
...

...
...

...
...

. . .

with statistically independent random variables (Nji)j,i∈N, which are all dis-
tributed according to Nnum, the Central Limit Theorem holds [Als05, p. 194],∑∑m

j=1 lj
i=1 Nmi − Eϑ

[∑∑m
j=1 lj

i=1 Nmi
]

√
Varϑ

[∑∑m
j=1 lj

i=1 Nmi
] d−−→ N (0, 1) for m→∞.

Moreover, Theorem 4.3.2 veri�es that

µ̂m(Z ) =

∑m
j=1 Nv(j)∑m
j=1 lj

∼
∑∑m

j=1 lj
i=1 Nmi∑m

j=1 lj
,

and therefore it holds

lim
m→∞

Pϑ
(
−q1−α/2 ≤ µ̂m(Z)−Eϑ[µ̂m(Z)]√

Varϑ[µ̂m(Z)]
≤ q1−α/2

)
= 1− α.

Theorem 4.3.3 yields

Eϑ[µ̂m(Z )] = µ and Varϑ[µ̂m(Z )] =
µ(1 + wϑ µ)∑m

j=1 lj
.

Theorem 4.3.3 and the consistency of %̂m (see Section 4.3.2) ensure that both
µ̂m(Z ) and %̂m(Z ) tend in probability to the real parameters µ and % respectively,
which causes [Als05, p. 170]√

µ(1 + wϑ µ)

µ̂m(Z )
(
1 + ŵm(Z ) µ̂m(Z )

) P−−→ 1 for m→∞.

With all these facts and Slutsky's Theorem [Slu25, Cra62, pp. 254�255] one gets

lim
m→∞

Pϑ

−q1−α/2 ≤ µ̂m(Z)−µ√
µ(1+wϑ µ)∑m

j=1
lj

√
µ(1+wϑ µ)

µ̂m(Z) (1+ŵm(Z) µ̂m(Z))
≤ q1−α

2

 = 1− α.

This is just a transcription of the proposition.
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The (approximate) con�dence interval of µ introduced in Theorem 4.3.4 only
depends on the estimates µ̂m and, in case of the negative binomial distribution,
%̂m, and on the total mileage

∑m
j=1 lj . The interval becomes smaller if the mileage

increases. Since the accuracy of estimate of µ can be quanti�ed by the length
of its con�dence interval, this fact generates the obvious question how long the
experiment must run so the con�dence interval becomes su�cient small.
In the preliminary stage of the experiment this question cannot be answered,

because, in the end, the number of observed SOLEs is responsible for the length
of the con�dence interval. To realize this de�ne the actual version of the approx-
imate con�dence interval from Theorem 4.3.4,

Cµ(α, z) :=

[
µ̂m(z)− q1−α/2

√
µ̂m(z)

(
1 + ŵm(z) µ̂m(z)

)∑m
j=1 lj

,

µ̂m(z) + q1−α/2

√
µ̂m(z)

(
1 + ŵm(z) µ̂m(z)

)∑m
j=1 lj

]
, (4.3)

where z = (zjk) 1≤j≤m
1≤k≤d

is a realization of Z = (Z v(j))1≤j≤m. Since Cµ(α, z) is

centered around µ̂m(z) and the tolerable interval length should depend on the
magnitude of µ, it make sense to express the length of Cµ(α, z) by the relative
deviation from the estimate µ̂m(z). In other words, �nd a δ ∈ R>0 such that

Cµ(α, z) =
[
(1− δ) µ̂m(z), (1 + δ) µ̂m(z)

]
.

The next proposition shows how to �nd such a δ.

4.3.5 Proposition. Let the situation be as in Theorem 4.3.2 and Theorem 4.3.4,
and let be α, δ ∈ (0, 1). Then the following statements are equivalent:

(i) The radius of Cµ(α, z), the actual approximate con�dence interval of µ
(see Equation (4.3) on page 77), is at most 100 δ% of the estimated value
µ̂m(z),

Cµ(α, z) ⊆
[
(1− δ) µ̂m(z), (1 + δ) µ̂m(z)

]
.

(ii) The bound δ is chosen large enough, i. e.

δ ≥ q1−α/2
√

1∑m
j=1

∑d
k=1

zjk
+ ŵm(z)∑m

j=1 lj
.

(iii) It holds (
δ

q1−α/2

)2

>
ŵm(z)∑m
j=1 lj

,
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and the total number of observed SOLEs is large enough, i. e.

m∑
j=1

d∑
k=1

zjk ≥
1(

δ
q1−α/2

)2

− ŵm(z)∑m
j=1 lj

.

(iv) The total number of kilometers satis�es the inequality

m∑
j=1

lj ≥
(

1

µ̂m(z)
+ ŵm(z)

)(q1−α/2
δ

)2

.

This proposition still holds if all `≥' and `⊆' are replaced by `='.

Proof. The following equivalences are a consequence of the de�nitions of µ̂m(z)
and Cµ(α, z) (see Theorem 4.3.2 and Equation (4.3) on page 77). They still hold
if all `≤' and `⊆' are replaced by `=':

Cµ(α, z) ⊆
[
(1− δ) µ̂m(z), (1 + δ) µ̂m(z)

]
⇔ q1−α/2

√
µ̂m(z)

(
1 + ŵm(z) µ̂m(z)

)∑m
j=1 lj

≤ δµ̂m(z)

⇔
(q1−α/2

δ

)2

≤ µ̂m(z)

1 + ŵm(z) µ̂m(z)

m∑
j=1

lj =

(
1∑m

j=1

∑d
k=1 zjk

+
ŵm(z)∑m
j=1 lj

)−1

.

The �rst line equates to statement (i), the last line is a simple transformation
of statements (ii), (iii) and (iv).

The fourth statement in the last proposition ostensibly answers the question
concerning a su�cient and necessary observation time. However, since µ̂m(z)
equals the quotient of total number of events and total mileage (see Theorem
4.3.2), the inequation in the fourth statement of Proposition 4.3.5 means

m∑
j=1

lj ≥

( ∑m
j=1 lj∑m

j=1

∑d
k=1 zjk

+ ŵm(z)

)(q1−α/2
δ

)2

.

The total mileage is found on both sides, and in the Poisson case, where ŵm(z) =
0, the total mileage can be canceled on both sides. The necessary mileage cannot
be determined in this way.
At least, the necessary number of SOLEs that must be observed is given

in the third statement of Proposition 4.3.5. If Nnum is Bernoulli or Poisson
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distributed, it is su�cient to observe (q1−α/2/δ)2 SOLEs, because in this case it
is ŵm(z) ∈ {−1, 0}, and so

m∑
j=1

d∑
k=1

zjk ≥
(q1−α/2

δ

)2

≥ 1(
δ

q1−α/2

)2

− ŵm(z)∑m
j=1 lj

.

If Nnum is Poisson distributed, this is even a necessary number of events. The
next step is to collect some data and estimate roughly the mean number of
SOLEs per kilometer. This allows to forecast the su�cient mileage for observing
about (q1−α/2/δ)2 events.
Let us construct a typical example to illustrate the previous procedure.

4.3.6 Example. Let Nnum be Poisson distributed, Nnum ∼ Poi(µ). Choose
α = 0.05 and δ = 0.1 so that(q1−α/2

δ

)2

=
(q0.975

0.1

)2

≈ 384.1 .

The symbol �≈� means that the values are rounded. This symbol is used in the
same way throughout this example. Proposition 4.3.5 provides that at least 385
SOLEs must be observed,

m∑
j=1

d∑
k=1

zjk ≥ 385 ,

so the radius of the actual approximate con�dence interval with con�dence level
0.95 is less than ten percent of the estimated value µ̂m(z),

Cµ(0.05, z) ⊆
[
0.9 µ̂m(z), 1.1 µ̂m(z)

]
.

In order to assess how long the experiment must run so 385 SOLEs can be
observed, one needs an estimate of the number of SOLEs per kilometer. Suppose,
the experiment runs since a while, and the estimated value for µ is

µ̂m(z) = 2 · 10−3.

Then, again Proposition 4.3.5 indicates that the interval Cµ(α, z) is as small as
desired if the observation period is at least 192 072.9 kilometers,

m∑
j=1

lj ≥
1

µ̂m(z)

(q1−α/2
δ

)2

= 500 ·
(q0.975

0.1

)2

≈ 192 072.9 .

If, instead, Nnum is negative binomially distributed, Nnum ∼ NBin(%, µ), one
additionally needs a rough estimate of the exponent %, because ŵm(z) = 1/%̂m(z).
Suppose, this estimate equals the estimate of µ,

%̂m(z) = 2 · 10−3 = µ̂m(z).
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Then a su�cient mileage is 384 145.9 kilometers

m∑
j=1

lj ≥
(

1

µ̂m(z)
+

1

%̂m(z)

)(q1−α/2
δ

)2

= 1000 ·
(q0.975

0.01

)2

≈ 384 145.9 .

Because, in the end, the total number of observed SOLEs determines the
dimensions of the con�dence interval, the necessary mileage obviously depends
on the number of expectable events per kilometer: the greater µ, the smaller is
the necessary mileage. This can also be seen in Proposition 4.3.5 and Example
4.3.6.
However, the variance of Nnum greatly in�uences the magnitude of the neces-

sary mileage, too. If, according to Proposition 4.3.5, lPoinec and lNBinnec denote the
necessary mileages in cases of the Poisson and negative binomial distribution,
respectively,

lPoinec :=
1

µ̂m(z)

(q1−α/2
δ

)2

and lNBinnec :=

(
1

µ̂m(z)
+

1

%̂m(z)

)(q1−α/2
δ

)2

,

and if NPoi
num ∼ Poi(µ) and NNBin

num ∼ NBin(%, µ), then it holds

lNBinnec

lPoinec

= 1 +
µ̂m(z)

%̂m(z)
and

Varϑ
[
NNBin
num

]
Varϑ[NPoi

num]
= 1 +

µ

%
.

This shows that the necessary mileage increases linearly with the (estimated)
variance of Nnum.

4.3.2. Estimating the Exponent % of the Number of SOLEs per
Kilometer

Let the number of SOLEs per kilometer be negative binomially distributed,
Nnum ∼ NBin(%, µ), with exponent % and mean µ (%, µ ∈ R>0). The estimate of
µ is discussed in Section 4.3.1 already. Here, the maximum likelihood estimator
of % shall be found.
Anscombe [Ans50] presumed that for l1 = . . . = lm = 1 the maximum likeli-

hood estimator of % exists if and only if the (biased) sample variance is larger
than the sample mean,

1

m

m∑
j=1

(
nj −

1

m

m∑
i=1

ni

)2

>
1

m

m∑
j=1

nj ,

where n1, . . . , nm are statistically independent realizations of Nnum. This con-
dition is in line with the fact that a negative binomially distributed variate is
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always overdispersed, i. e. the variance is larger than the expectation (see De�-
nition 2.4.2). Aragón et al. [AEE92] tried to proof Anscombe's conjecture, but
according to Wang [Wan96] their proof is partly wrong. Wang [Wan96] points
to Levin and Reeds [LR77] for an overlooked proof of Anscombe's conjecture.
The following theorem provides a similar condition when the mileages lj vary.

4.3.7 Theorem. Let z = (zjk) 1≤j≤m
1≤k≤d

∈ N0
m×d be a realization of

(
Z v(j)

)
1≤j≤m

with z 6≡ 0. Apply the shortcuts

nj :=

d∑
k=1

zjk, n :=

m∑
j=1

nj and l :=

m∑
j=1

lj .

Suppose, Nnum is negative binomially distributed, Nnum ∼ NBin(%, µ). Then, the
maximum likelihood estimator (%̂m, µ̂m) of (%, µ) based on z exists if and only if

m∑
j=1

nj
2

lj
− n2

l
>

m∑
j=1

nj
lj
.

Moreover, if the maximum likelihood estimator exists, %̂m is the unique solution
of both of the following equivalent equations:

m∑
j=1

lj
(
ψ(%lj+nj)−ψ(%lj)

)
= l log

(
1 + n

%l

)
⇔

m∑
j=1

nj−1∑
x=0

1

%+ x
lj

= l log
(

1 + n
%l

)
,

where ψ is the digamma function, ψ(x) = d
dx

log(Γ(x)), [AS65, p. 258]. µ̂m is
given by

µ̂m(z) =
n

l
.

Proof. The formula for µ̂m is provided by Theorem 4.3.2, and the maximum
likelihood estimator %̂m based on z is the solution of the equation

∂`num
∂%

(%, µ̂m(z); z) = 0

(see Proposition 4.2.1). This derivative is given in Lemma 4.3.1,

∂`num
∂%

(%, µ̂m(z); z) =

m∑
j=1

lj
(
ψ(%lj + nj)− ψ(%lj)

)
− l log

(
1 + n

%l

)

=
m∑
j=1

nj−1∑
x=0

1

%+ x
lj

− l log
(

1 + n
%l

)
.
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With the reparametrization η = %l
m

and the shortcuts aj := l
mlj

(j ∈ N≤m) the
derivative of `num looks like

∂`num
∂%

(%, µ̂m(z); z) = l

(
1

m

m∑
j=1

nj−1∑
x=0

1

η + xaj
− log

(
1 + n

mη

)
︸ ︷︷ ︸

=:H(η)

)
.

It remains to be shown that H as function with respect to η has a root if and
only if the term

(∑m
j=1

nj
2
/lj − n2

/l
)
is larger than

∑m
j=1

nj/lj , that this root is
unique if it exists, and that H changes its sign from positive to negative at this
root.
In the standard case where l1 = . . . = lm = 1 and, therefore, a1 = . . . = am = 1

it has already been shown that H(η) has one or no root on R>0 [Wan96, LR77].
It can be expected that even for general factors aj ∈ R>0 H has at most one
root.
To decide whether H has a root or not, Aragón et al. [AEE92] use the

reparametrization r = 1
η
. Here, this reparametrization leads to the de�nition

h(r) :=
1

m

m∑
j=1

nj−1∑
x=0

r

1 + xajr
− log

(
1 + n

m
r
)

=
1

m

m∑
j=1

nj−1∑
x=1

r

1 + xajr
+ r

(
m−m0

m
−

log
(
1 + n

m
r
)

r

)
∀r ∈ R≥0,

where m0 is the number of observations with nj = 0. Due to this de�nition it
holds

h(r) = H
(

1
r

)
=

1

l
∂`num
∂%

(
m
rl
, µ̂m(z); z

)
∀r ∈ R>0.

Hence, if r0 is a root of h on R>0, then %̂m(z) = m
r0l

.
On the one hand, h(r) tends to ∞ if r approaches ∞, because

lim
r→∞

m∑
j=1

nj−1∑
x=1

r

1 + xajr
=

m∑
j=1

nj−1∑
x=1

1

xaj
≥ 0,

and, according to l'Hôpital's Rule [For04, p. 171],

lim
r→∞

log
(
1 + n

m
r
)

r
= lim
r→∞

n

m+ nr
= 0.
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On the other hand, due to the structure of the derivatives of h,

dh
dr

(r) =
1

m

m∑
j=1

nj−1∑
x=0

1

(1 + xajr)
2 −

n

m+ nr
,

d2h
dr2

(r) = − 1

m

m∑
j=1

nj−1∑
x=0

2ajx

(1 + xajr)
3 +

n2

(m+ nr)2 ,

it holds
h(0) = 0 and dh

dr
(0) = 0

and

d2h
dr2

(0) = − 1

m

m∑
j=1

nj(nj − 1)aj +
n2

m2
=

l

m2

(
m∑
j=1

nj
lj
−

m∑
j=1

nj
2

lj
+
n2

l

)
.

Hence, if
(∑m

j=1
nj

2
/lj−n2

/l
)
is larger (less) than

∑m
j=1

nj/lj , then it is d2h
dr2

(0) < 0(
d2h
dr2

(0) > 0
)
. In this case, h is strictly concave (convex) near 0 [For04, p. 166].

Moreover, the properties h(0) = 0, dh
dr

(0) = 0 and limr→∞ h(r) = ∞ provide in
this situation that there are ε, δ ∈ R>0 such that

h(r) < 0
(
h(r) > 0

)
∀r ∈ (0, ε) and h(r) > 0 ∀r ∈ (δ,∞).

As a consequence h as function on R>0 must have an odd (even) number of
roots. But, as found above, h has at most one root. Thus, if

(∑m
j=1

nj
2
/lj−n2

/l
)

is larger than
∑m
j=1

nj/lj , h and therefore H both have a unique root on R>0,

and if
(∑m

j=1
nj

2
/lj−n2

/l
)
is less than

∑m
j=1

nj/lj , h and H both have no root on

R>0. For continuity reasons h and H cannot have a root if
(∑m

j=1
nj

2
/lj − n2

/l
)

is equal to
∑m
j=1

nj/lj .

The necessary and su�cient condition in Theorem 4.3.7 for the existence of
the maximum likelihood estimator of % reminds of D̂2, the estimator of the index
of dispersion,

D̂2 = D̂2

(
(nj , lj)1≤j≤m

)
:=

1
m

∑m
j=1

nj
2

lj
− 1

m

(
∑m
j=1 nj)

2∑m
j=1 lj

1
m

∑m
j=1

nj
lj

(see Section 3.5.1, Equation (3.6)). Theorem 4.3.7 provides that %̂m exists if and
only if (D̂2− 1) is positive. As described in Section 3.5.7, Nnum is only assumed
to be negative binomially distributed if

(D̂2 − 1) >
√

2
m
q1−α/2,
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where q1−α/2 denotes the
(
1− α

2

)
100 % quantile of the standard normal distri-

bution (α ∈ (0, 1)). Since q1−α/2 is positive for any α ∈ (0, 1), (D̂2 − 1) must
be positive then. Summarized, if Nnum is chosen to be negative binomially dis-
tributed according to the hypothesis test in Section 3.5.3, then the maximum
likelihood estimator (%̂m, µ̂m) of (%, µ) exists.

The maximum likelihood estimator %̂m cannot be unbiased, because Wang
[Wan96] veri�ed that an unbiased estimator of % does not exist (his simple proof
even works for arbitrary mileages). Anscombe [Ans50] even found (in case of
l1 = . . . = lm = 1) that %̂m does not have a proper distribution, because with
positive probability the sample mean is larger than the sample variance. Also
here, with positive probability the maximum likelihood estimator of % does not
exist. As mentioned above, %̂m exists if and only if D̂2 exceeds 1. Theorem 3.5.2
provides that D̂2 is approximately normally distributed with mean D[Nnum] and
variance τiod2. Hence, the probability that %̂m does not exist approximately is

Pϑ
(
D̂2 ≤ 1

)
= Pϑ

(√
m

τiod
2

(
D̂2 − D[Nnum]

)
≤ −
√
mcϑ

)
≈ 1√

2π

∫ −√mcϑ
−∞

e−
1
2
x2

dx,

where cϑ := (D[Nnum]−1)/τiod. Since the index of dispersion D[Nnum] is larger than
1 in the negative binomial case, the probability that %̂m does not exist tends
to zero for m → ∞. If someone is interested in the speed of convergence, he
must calculate the constant cϑ. According to Anscombe [Ans50] the �rst four
cumulants of a negative binomially distributed variate are

κ1[Nnum] = µ, κ2[Nnum] = µ

(
1 +

µ

%

)
, κ3[Nnum] = µ

(
1 +

µ

%

)(
1 +

2µ

%

)
κ4[Nnum] = µ

(
1 +

µ

%

)(
1 +

6µ

%
+

6µ2

%2

)
.

Hence, numerator and denominator of cϑ are

(
D[Nnum]− 1

)
=
µ

%
, τiod =

√
E
[

1
L

](2

%
+

5µ

%2
+

3µ2

%3

)
+ 2

(
1 +

µ

%

)2

(4.4)

due to Theorem 3.5.2.

It is well-known (if l1 = . . . = lm = 1) that the maximum likelihood es-
timator of (%, µ) is asymptotically e�cient [Hal41, Ans50, Law87, SZ06], i. e.
(%̂m, µ̂m) is asymptotically jointly normally distributed with mean (%, µ) and
the inverse of the Fisher information matrix as covariance matrix (see Section
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2.4.3). Generally, this is true for all maximum likelihood estimators if some regu-
larity conditions hold [LC98, pp. 449/463]. Even if the random variables are not
identically distributed, in many situations the maximum likelihood estimator is
asymptotically e�cient (consider particularly the results of Inagaki [Ina73], also
see Bradley [BG62] and Hoaley [Hoa71]; examples for inconsistent maximum
likelihood estimators see Crowder [Cro86]). Therefore and with a reference to
the numerical results in section 5.3.2, it can be assumed that even here (%̂m, µ̂m)
is asymptotically e�cient. Theorem 4.2.2 provides under the assumption of Re-
mark 4.2.3 that the inverse of the Fisher information matrix concerning % and µ
is

Inum(%, µ)−1 =

σ%,m2 0

0
µ
(
1+µ

%

)
∑m
j=1 lj

 ,

where

σ%,m
2 :=

(
m∑
j=1

lj
2 Eϑ

[
h
(
%lj , N

∗lj
num

)]
− log

(
1 + µ

%

)2
m∑
j=1

lj
2 − µ

%(%+ µ)

m∑
j=1

lj

)−1

,

h : R>0
2 → R>0 : (x, y) 7−→

(
y−1∑
n=0

1

x+ n

)2

=
(
ψ(x+ y)− ψ(x)

)2
.

The fact that µ̂m is asymptotically normally distributed with mean µ and vari-
ance µ

(
1+µ

%

)
/∑m

j=1 lj is already known from Theorem 4.3.3 and Theorem 4.3.4.
The asymptotic e�ciency of %̂m yields with Z := (Z v(j))1≤j≤m

1− α = lim
m→∞

Pϑ
(
−q1−α/2 ≤ %̂m(Z)−%

σ̂%,m(Z)
≤ q1−α/2

)
= lim
m→∞

Pϑ
(
%̂m(Z )− σ̂%,m(Z ) q1−α/2 ≤ % ≤ %̂m(Z ) + σ̂%,m(Z ) q1−α/2

)
,

where q1−α/2 is the
(
1− α

2

)
100 % quantile of the standard normal distribution

and σ̂%,m(Z ) equates σ%,m =
√
σ%,m2 with µ and % replaced by the estimators

µ̂m(Z ) and %̂m(Z ) respectively. Eventually, if z is a realization of Z , an approx-
imate actual con�dence interval of % with con�dence level (1 − α) (α ∈ (0, 1))
is

C%(α, z) :=
[
%̂m(z)− σ̂%,m(z) q1−α/2, %̂m(z) + σ̂%,m(z) q1−α/2

]
. (4.5)

It also should be noted that the entries of the anti-diagonal of the inverse
Fisher information matrix above are all equal to 0. Since this is the asymp-
totic covariance matrix of (%̂m, µ̂m), %̂m and µ̂m are asymptotically independent,
because jointly normally distributed and uncorrelated random variables are sta-
tistically independent [Als05, p. 141].

Section 4.3.1 discusses the question how long the experiment must run so the
con�dence interval of µ is smaller than a default value (see Proposition 4.3.5 and
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Example 4.3.6). It is argued that rough estimates of µ̂m and %̂m are needed to
answer this question. Concerning %, it is even more di�cult to �nd an answer.
However, since the (approximate) variance of %̂m, σ%,m2, surely increases if the
mileages increase, it must hold

σ%,m
2 ≤

(
ml0

2 Eϑ
[
h
(
%l0, N

∗l0
num

)]
−ml02 log

(
1 + µ

%

)2

− ml0µ

%(%+ µ)

)−1

,

where l0 := min{lj | 1 ≤ j ≤ m}. This results in the following basic transforma-
tions:

m ≥
( q1−α/2

δ

)2

%̂m(z)2
(
l02 E

ϑ̂m

[
h
(
%̂ml0,N

∗l0
num

)]
−l02 log

(
1+

µ̂m
%̂m

)2
− l0µ̂m
%̂m(%̂m+µ̂m)

) (4.6)

⇒ 1 ≥ σ̂%,m(z)2

%̂m(z)2

(q1−α/2
δ

)2

⇔ C%(α, z) ⊆
[
(1− δ) %̂m(z), (1 + δ) %̂m(z)

]
Consequently, Equation (4.6) above yields a su�cient sample size of vehicles
each with mileage l0 so that the radius of C%(α, z) is at most 100 δ% of the
estimated value %̂m.

4.3.8 Example. Let the situation be as in Example 4.3.6, i. e.

α = 0.05, δ = 0.1, %̂m(z) = 2 · 10−3 = µ̂m(z).

Based on these values, the evaluation of Equation (4.6) on page 86 yields

m ≥

(
q1−α/2
δ

)2

%̂m(z)2

(
l0

2 Eϑ̂m
[
h
(
%̂ml0, N

∗l0
num

)]
− l02 log

(
1 + µ̂m

%̂m

)2

− l0µ̂m
%̂m(%̂m+µ̂m)

)
≈

{
996 912.5, if l0 = 1,

3782.8, if l0 = 1000.

This means that both a sample size of 996 913 vehicles each with mileage 1
and a sample size of 3783 vehicles each with mileage 1000 are su�cient for
C%(0.05, z) ⊆

[
0.9 %̂m(z), 1.1 %̂m(z)

]
.
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4.4. Estimating the Severity of a SOLE in the Counting

Model

Section 3.6 provides that an arbitrary SOLE Ssev is assumed to have a shifted
generalized Pareto distribution with positive shape,

Fsev(t) = Fsev(t; ξ, β) = 1R>usev (t) ·

1−
(

1 + ξ
β

(t− usev)
)− 1

ξ
, if ξ > 0,

1− e
− 1
β

(t−usev)
, if ξ = 0

for all t ∈ R. The parameters ξ and β shall be estimated based on the counts
z = (zjk) 1≤j≤m

1≤k≤d
as described in Section 4.1 and Section 4.2.1. According to

Proposition 4.2.1, the maximum likelihood estimator of ς = (ξ, β) is the maxi-
mizer of

`Csev(ς; z) =

m∑
j=1

d∑
k=1

zjk log
(
pAjk

)
=

m∑
j=1

d∑
k=1

zjk log(Fsev(tjk)− Fsev(tj,k−1)) .

Before looking for a maximum likelihood estimator of ς in Section 4.4.2, the
following Section 4.4.1 gives some conditions in which such an estimator does
not exist. In doing so, it is not taken into account that Fsev is chosen to be the
cumulative distribution function of a shifted generalized Pareto distribution but
Theorem 4.4.1 holds for arbitrary severity distributions. Finally, Section 4.4.4
covers the case when the class limits are equidistant, i. e. the class lengths are
all equal to each other,

tjk − tj,k−1 = tj,k+1 − tjk ∀j ∈ N≤m, ∀k ∈ N≤d−2.

It is shown that a class length can be found which optimizes the accuracy of
parameter estimate.

4.4.1. When does the Maximum Likelihood Estimator of (ξ, β)
not Exist

Regardless of whether Ssev is shifted generalized Pareto distributed, there are
situations where the maximum likelihood estimator of the parameters of Fsev
does not exist. If, for instance, the observation reveals only events in the lowest
class, one may believe that the severity of any SOLE lies almost sure within the
lowest class. However, an absolutely continuous and strictly increasing cumula-
tive distribution function gives positive probabilities to all classes. Depending
on the structure of Fsev, it may happen that the likelihood function does not
have a maximum. Kulldor� [Kul61] veri�es this fact in case of the exponential
distribution and the normal distribution. The following theorem proves this and
some other facts in general.
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4.4.1 Theorem. Let z = (zjk) 1≤j≤m
1≤k≤d

∈ N0
m×d be a realization of

(
Z v(j)

)
1≤j≤m.

1. Suppose Fsev has the following characteristics:

� Fsev(t; ς) < 1 ∀t ∈ R, ∀ς ∈ Θsev,

� sup
ς∈Θsev

Fsev(t; ς) = 1 ∀t ∈ R>usev .

If zjk = 0 for all j ∈ N≤m and k ∈ {2, . . . , d}, then ς 7→ `Csev(ς; z) is
identically zero or does not have a maximum. Thus, in this case, there
does not exist a maximum likelihood estimator of ς based on z.

2. Suppose Fsev has the following characteristics:

� Fsev(t; ς) > 0 ∀t ∈ R>usev , ∀ς ∈ Θsev,

� inf
ς∈Θsev

Fsev(t; ς) = 0 ∀t ∈ R.

If zjk = 0 for all j ∈ N≤m and k ∈ N≤d−1, then the function ς 7→ `Csev(ς; z)
is identically zero or does not have a maximum. Thus, in this case, there
does not exist a maximum likelihood estimator of ς based on z.

3. Suppose Fsev has the following characteristics:

� Fsev(s; ς) < Fsev(t; ς) ∀ς ∈ Θsev, ∀s, t ∈ R≥usev with s < t,

� for all a ∈ [0, 1] there is a sequence (ςn)n∈N ⊆ Θsev such that

lim
n→∞

Fsev(t; ςn) = a ∀t ∈ R>usev .

Suppose it is d ∈ N≥3 and the class limits are chosen such that

max
1≤j≤m

tj1 < min
1≤j≤m

tj,d−1.

If zjk = 0 for all j ∈ N≤m and k ∈ {2, . . . , d − 1}, then the function
ς 7→ `Csev(ς; z) is identically zero or does not have a maximum. Thus, in
this case, there does not exist a maximum likelihood estimator of ς based
on z.

Proof. 1.: If z ≡ 0, then `Csev( · ; z) ≡ 0. Otherwise, it holds

`Csev(ς; z) =

m∑
j=1

zj1 log(Fsev(tj1; ς)) < 0 ∀ς ∈ Θsev.

De�ne tmin := min{tj1|1 ≤ j ≤ m}, then it can be shown that the supremum of
`Csev( · ; z) vanishes,

0 ≥ sup
ς∈Θsev

`Csev(ς; z) ≥ sup
ς∈Θsev

log(Fsev(tmin;ϑ))
m∑
j=1

zj1

= log

(
sup

ς∈Θsev

Fsev(tmin;ϑ)

) m∑
j=1

zj1 = 0
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Thus, `Csev( · ; z) does not have a maximum.

2.: If z ≡ 0, then `Csev( · ; z) ≡ 0. Otherwise, it holds

`Csev(ς; z) =

m∑
j=1

zjd log(1− Fsev(tj,d−1; ς)) < 0 ∀ς ∈ Θsev.

However, the supremum of `Csev( · ; z) is equal to 0, because with the notation
tmax := max{tj,d−1|1 ≤ j ≤ m} it is

0 ≥ sup
ς∈Θsev

`Csev(ς; z) ≥ log

(
1− inf

ς∈Θsev

Fsev(tmax; ς)

) m∑
j=1

zjd = 0.

Thus, `Csev( · ; z) does not have a maximum.

3.: Without loss of generality, let there be j, i ∈ N≤m such that zj1 > 0 and
zid > 0, because otherwise the situation is described by the �rst or the second
statement of this theorem.
De�ne t∗ := max{tj1|1 ≤ j ≤ m}, then for all ς ∈ Θsev it holds

`Csev(ς; z) =

m∑
j=1

(
zj1 log(Fsev(tj1; ς)) + zjd log(1− Fsev(tj,d−1; ς))

)
< log(Fsev(t∗; ς))

m∑
j=1

zj1 + log(1− Fsev(t∗; ς))

m∑
j=1

zjd,

because the assumptions of this statement include

Fsev(tj1; ς) ≤ Fsev(t∗; ς) and Fsev(tj,d−1; ς) > Fsev(t∗; ς) ∀j ∈ N≤m.

The continuous function x 7→ a log(x) + b log(1− x) on (0, 1) (a, b ∈ R>0) be-
comes its global maximum at x = a

a+b
, which can be veri�ed by discovering its

derivative x 7→ 1
1−x

(
a
x
− (a+ b)

)
. This implies

`Csev(ς; z) < log
( ∑m

j=1 zj1∑m
j=1(zj1+zjd)

) m∑
j=1

zj1 + log
( ∑m

j=1 zjd∑m
j=1(zj1+zjd)

) m∑
j=1

zjd ∀ς ∈ Θsev.

But the existence of a sequence (ςn)n∈N ⊆ Θsev with

lim
n→∞

Fsev(t; ςn) =

∑m
j=1 zj1∑m

j=1(zj1 + zjd)
∀t ∈ R>usev

ensures

lim
n→∞

`Csev(ςn; z) = log
( ∑m

j=1 zj1∑m
j=1(zj1+zjd)

) m∑
j=1

zj1 + log
( ∑m

j=1 zjd∑m
j=1(zj1+zjd)

) m∑
j=1

zjd.

Thus, the maximum of `Csev( · ; z) does not exist.
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In Section 4.4.2, more precisely in Theorem 4.4.4, it is shown that the general-
ized Pareto distribution satis�es all the conditions mentioned in the last theorem.
Moreover, in the situation of the third statement of Theorem 4.4.1 it even holds
`if and only if' as long as Ssev is (shifted) generalized Pareto distributed.

4.4.2. Maximum Likelihood Estimation of (ξ, β)

The common way to �nd a maximum likelihood estimator is looking for roots
of the derivative(s) of the log-likelihood function. Since the function `Csev shall
be maximized, the gradient of `Csev is needed. It is important to note that the
gradient, which is given in the next lemma, is not directly related to the class
limits tjk, but, as it is `Csev, it depends on the relative class limits sjk = tjk−usev
as de�ned in Section 4.1.

4.4.2 Lemma. Let z = (zjk) 1≤j≤m
1≤k≤d

∈ N0
m×d be a realization of (Z v(j))1≤j≤m.

De�ne for all t ∈ R≥usev and x, a ∈ R≥0

F ∗sev(t) := 1− Fsev(t) =


(

1 + ξ
β

(t− usev)
)− 1

ξ
, if ξ > 0,

e
− 1
β

(t−usev)
, if ξ = 0,

ϕi(x, a) := 1{2}(i) + 1{1}(i) ·

{
1
x

(
log(1 + xa)

(
1 + 1

xa

)
− 1
)
, if xa > 0,

a
2
, if xa = 0,

(i ∈ {1, 2}). Then the gradient3 of `Csev( · ; z) is

grad
(
`Csev(ξ, β; z)

)
:=
(
∂`Csev
∂ξ

(ξ, β; z),
∂`Csev
∂β

(ξ, β; z)
)

=
(
∆1(ξ, β; z), ∆2(ξ, β; z)

)
with

∆i(ξ, β; z) =

m∑
j=1

d−1∑
k=1

ϕi
(
ξ
β
, sjk

)
sjk

β2 + ξβsjk

 zj,k+1

1− F∗sev(tj,k+1)

F∗sev(tjk)

− zjk
F∗sev(tj,k−1)

F∗sev(tjk)
− 1


=

m∑
j=1

d−1∑
k=1

zjk

ϕi
(
ξ
β
, sj,k−1

)
sj,k−1

β2+ξβsj,k−1

1− F∗sev(tjk)

F∗sev(tj,k−1)

−
ϕi
(
ξ
β
, sjk

)
sjk

β2+ξβsjk

F∗sev(tj,k−1)

F∗sev(tjk)
− 1


+

m∑
j=1

zjd ϕi
(
ξ
β
, sj,d−1

) sj,d−1

β2 + ξβsj,d−1
,

3at ξ = 0 ∂

∂ξ
means the right partial derivative
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Proof. The de�nition of `Csev in Proposition 4.2.1 implies

∂`Csev
∂ξ

(ξ, β; z) =

m∑
j=1

d∑
k=1

zjk

∂
∂ξ
pAjk

pAjk
.

pAjk denotes the probability that a SOLE falls into the interval Ajk=(tj,k−1, tjk],

pAjk = p(tj,k−1,tjk] = Fsev(tjk)− Fsev(tj,k−1) = F ∗sev(tj,k−1)− F ∗sev(tjk).

(see De�nition 3.1.1). For all j ∈ N≤m, the coe�cient of zjk in the derivative of
`Csev is

∂
∂ξ
pAjd

pAjd
=

∂
∂ξ
F ∗sev(tj,d−1)

F ∗sev(tj,d−1)
and

∂
∂ξ
pAjk

pAjk
=

∂
∂ξ
F∗sev(tj,k−1)

F∗sev(tj,k−1)

1− F∗sev(tjk)

F∗sev(tj,k−1)

−

∂
∂ξ
F∗sev(tjk)

F∗sev(tjk)

F∗sev(tj,k−1)

F∗sev(tjk)
− 1

for all k ∈ N≤d−1 (for k = d consider that F ∗sev(tjd) = 0). The (right) derivative
of F ∗sev can be read out in the appendix (see Lemma A.1).
The derivative of `Csev with respect to β can be veri�ed in the exact same

way.

The partial derivatives of `Csev with respect to ξ and β di�er only in the terms
ϕ1 and ϕ2 de�ned in the last lemma. While ϕ2 ≡ 1, ϕ1( · , a) is, for any �xed
a ∈ R>0, continuous, positive, strictly decreasing and strictly convex, and it
holds

lim
x→0

ϕ1(x, a) =
a

2
and lim

x→∞
ϕ1(x, a) = 0

(see lemma A.2 in the appendix; moreover, it can be conjectured that all the
derivative terms (−1)n ∂

nϕ1
∂xn

( · , a) are positive, strictly decreasing, strictly con-
vex, and they tend to 0 if x approaches ∞).

By means of the gradient of `Csev a maximum likelihood estimator of (ξ, β) can
be found. Every common root of the partial derivatives of `Csev is a candidate.
But questions raised are: 1. is there a common root, and 2. are there more than
one common root. The next proposition gives answers to these questions under
the condition that not all medium classes are empty (otherwise, the maximum
likelihood estimator does not exist, see Theorem 4.4.1 and Theorem 4.4.4).

4.4.3 Proposition. Let be d ∈ N≥3. For any j ∈ N≤m and k ∈ {2, . . . , d− 1}
de�ne the function

β∗jk : R≥0 → R≥0 : ξ 7−→


ξsjk

1−
(
sj,k−1
sjk

) 1
ξ+1

(
sjk

sj,k−1

) ξ
ξ+1−1

, if ξ > 0,

sjk−sj,k−1

log

(
sjk

sj,k−1

) , if ξ = 0.
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Given a realization z = (zjk) 1≤j≤m
1≤k≤d

∈ N0
m×d of

(
Z v(j)

)
1≤j≤m such that there

is at least one (j0, k0) ∈ N≤m × {2, . . . , d− 1} with zj0k0 > 0, it holds:

1. For every ξ ∈ R≥0 there exist unique roots β◦(ξ), β∗(ξ) ∈ R>0 such that

∂`Csev
∂ξ

(ξ, β◦(ξ); z) = 0 and ∂`Csev
∂β

(ξ, β∗(ξ); z) = 0,

and both derivatives as function with respect to β change their sign from
positive to negative at the particular root.

2. If the upper classes are empty, i. e. there is a b ∈ {2, . . . , d − 1} such that
zjk = 0 for all j ∈ N≤m and k ∈ {b + 1, . . . , d}, then the root β∗(ξ) of
∂`Csev
∂β

(ξ, · ; z) is bounded from above in the following way:

β∗(ξ) ≤ max
1≤j≤m
2≤k≤b

β∗jk(ξ) ≤ max
1≤j≤m
2≤k≤b

sjk − sj,k−1

log
(

sjk
sj,k−1

) < max
1≤j≤m

sjb.

If the lower classes are empty, i. e. there is an a ∈ {2, . . . , d − 1} such
that zjk = 0 for all j ∈ N≤m and k ∈ N≤a−1, then the root β∗(ξ) of
∂`Csev
∂β

(ξ, · ; z) is bounded from below in the following way:

β∗(ξ) ≥ min
1≤j≤m
a≤k≤d−1

β∗jk(ξ) ≥ min
1≤j≤m
a≤k≤d−1

log
(

sjk
sj,k−1

)
1

sj,k−1
− 1

sjk

> min
1≤j≤m

sj,a−1.

3. `Csev( · ; z) has got at most one stationary point, i. e. there is at most one
point (ξ0, β0) ∈ Θsev satisfying

grad
(
`Csev(ξ0, β0; z)

)
= 0.

If such a stationary point exists, it is the global maximizer of `Csev( · ; z).

Proof. 1.: At �rst, let us have a look at the partial derivatives of `Csev as given
in Lemma 4.4.2. More precisely, analyze any single addend of this derivatives.
For this purpose, de�ne for i ∈ {1, 2}

Si(ξ, β, j, k) :=
ϕi
(
ξ
β
, sj,k−1

)
sj,k−1

β2+βξsj,k−1

1− F∗sev(tjk)

F∗sev(tj,k−1)

−
ϕi
(
ξ
β
, sjk

)
sjk

β2+βξsjk

F∗sev(tj,k−1)

F∗sev(tjk)
− 1

,

where j ∈ N≤m and k ∈ {2, . . . , d − 1} (see Lemma 4.4.2 for the de�nitions of
ϕi and F ∗sev). A transposition of Si yields

Si(ξ, β, j, k)

=
ϕi
(
ξ
β
, sjk

)
sjk

β2+βξsjk

F∗sev(tj,k−1)

F∗sev(tjk)
− 1

·


ϕi

(
ξ
β
,sj,k−1

)
ϕi

(
ξ
β
,sjk

) sj,k−1

sjk

(
β+ξsjk

β+ξsj,k−1

) 1
ξ

+1

− 1, if ξ > 0,

ϕi(0,sj,k−1)
ϕi(0,sjk)

sj,k−1

sjk
e

1
β (sjk−sj,k−1) − 1, if ξ = 0.
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Because of sjk > sj,k−1 and ϕ2 ≡ 1 it is equivalent

S2(ξ, β, j, k) = 0 ⇔ sjk
sj,k−1

=


(

β+ξsjk
β+ξsj,k−1

) 1
ξ

+1

, if ξ > 0,

e
1
β (sjk−sj,k−1), if ξ = 0.

⇔ β = β∗jk(ξ),

where β∗jk is the function de�ned in the proposition. This means that S2(ξ, ·, j, k)
has a unique root for any �xed ξ ∈ R≥0, j ∈ N≤m and k ∈ {2, . . . , d− 1}.
The same applies to S1(ξ, ·, j, k). Due to ϕ1(0, a) = a

2
for any a ∈ R≥0, it is

equivalent

S1(0, β, j, k) = 0 ⇔
(

sjk
sj,k−1

)2

= e
1
β (sjk−sj,k−1) ⇔ β =

1

2
β∗jk(0).

Furthermore, in case of ξ > 0 the functions

ηjk : R>0 → R>0 : x 7−→
log
(

1+xsjk
1+xsj,k−1

)
log

( 1
sj,k−1

+x

1
sjk

+x

)
+ log

(
ϕ1(x,sjk)

ϕ1(x,sj,k−1)

)
are needed, because now it is equivalent

S1(ξ, β, j, k) = 0 ⇔
ϕ1

(
ξ
β
, sjk

)
ϕ1

(
ξ
β
, sj,k−1

) sjk
sj,k−1

=

(
1 + ξ

β
sjk

1 + ξ
β
sj,k−1

) 1
ξ

+1

⇔ ηjk
(
ξ
β

)
= ξ

⇔ β =
ξ

η−1
jk (ξ)

.

The inverse function η−1
jk of ηjk exists, because ηjk(x)

x→0−−−→ 0, ηjk(x)
x→∞−−−−→ ∞,

and the numerator of ηjk is positive and strictly increasing while both addends
in the denominator are positive and strictly decreasing.
All this implies that S1(ξ, ·, j, k) and S2(ξ, ·, j, k) each have got a unique root

for any �xed ξ ∈ R≥0, j ∈ N≤m and k ∈ {2, . . . , d− 1}. Furthermore, due to

lim
β→0

ϕi
(
ξ
β
, sj,k−1

)
ϕi
(
ξ
β
, sjk

) sj,k−1

sjk

(
β + ξsjk
β + ξsj,k−1

) 1
ξ

+1

− 1

 =

(
sjk
sj,k−1

) 1
ξ

− 1 > 0,

the sign of Si(ξ, ·, j, k) must change from positive to negative at the unique root.
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In addition to this, with s0 := max{sj,d−1 | 1 ≤ j ≤ m} the term

β Si(ξ, β, j, k)

ϕi
(
ξ
β
, s0

)
is strictly decreasing as function with respect to β. Hence, also the sums

Ti(ξ, β; z) :=

m∑
j=1

d−1∑
k=2

zjk
β Si(ξ, β, j, k)

ϕi
(
ξ
β
, s0

)
as functions with respect to β each have a unique root and are strictly decreasing
(i ∈ {1, 2}). Together with the terms

Qi(ξ, β; z) := −
m∑
j=1

zj1
ϕi
(
ξ
β
, sj1

)
ϕi
(
ξ
β
, s0

) sj1
β + ξsj1

·


1(

1+ ξ
β
sj1

) 1
ξ −1

, if ξ > 0,

1

e
1
β
sj1−1

, if ξ = 0,

Pi(ξ, β; z) :=

m∑
j=1

zjd
ϕi
(
ξ
β
, sj,d−1

)
ϕi
(
ξ
β
, s0

) sj,d−1

β + ξsj,d−1
,

the partial derivatives of `Csev are

∂`Csev
∂ξ

(ξ, β; z) =
ϕ1

(
ξ
β
, s0

)
β

(
T1(ξ, β; z) +Q1(ξ, β; z) + P1(ξ, β; z)

)
,

∂`Csev
∂β

(ξ, β; z) =
1

β

(
T2(ξ, β; z) +Q2(ξ, β; z) + P2(ξ, β; z)

)
(see Lemma 4.4.2). Since the terms Qi as functions with respect to β are strictly
decreasing and tend to 0 for β → 0 (or they are identically zero), while the terms
Pi are strictly decreasing and tend to 0 for β →∞ (or they are identically zero),

the derivatives ∂`Csev
∂ξ

(ξ, ·; z) and ∂`Csev
∂β

(ξ, ·; z) each have got a unique root, and
their signs change from positive to negative at these roots.

2.: Again, have a look at the addends Si(ξ, β, j, k) of the partial derivatives
of `Csev as de�ned in the proof of the �rst statement of this proposition. If there
is a b ∈ {2, . . . , d− 1} such that

∑m
j=1

∑d
k=b+1 zjk = 0, the partial derivative of

`Csev with respect to β is (see Lemma 4.4.2)

∂`Csev
∂β

(ξ, β; z) =
m∑
j=1

(
b∑

k=2

zjk S2(ξ, β, j, k)− zj1
sj1

β2+ξβsj1
1

F∗sev(tj1)
− 1

)

≤
m∑
j=1

b∑
k=2

zjk S2(ξ, β, j, k).
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In the proof of the �rst statement above the term β∗jk(ξ) is identi�ed to be the
unique root of S2(ξ, ·, j, k). Consequently, it must be

β∗(ξ) ≤ max
1≤j≤m
2≤k≤b

β∗jk(ξ),

because if β is larger than the greatest single root β∗jk(ξ), all terms S2(ξ, β, j, k)
are negative already. The β∗jk(ξ) can be rewritten as

β∗jk(ξ) = ξsjk
1− exp

(
1
ξ+1

log
(

sjk
sj,k−1

))
exp
(

ξ
ξ+1

log
(

sjk
sj,k−1

))
− 1

,

and results from the appendix (see Lemma A.3) ensure that

β∗jk(ξ) ∈

 log
(

sjk
sj,k−1

)
1

sj,k−1
− 1

sjk

,
sjk − sj,k−1

log
(

sjk
sj,k−1

)
 ⊆ [sj,k−1, sjk] .

If there is an a ∈ {2, . . . , d − 1} such that
∑m
j=1

∑a−1
k=1 zjk = 0, the argumen-

tation is the same, because here the partial derivative of `Csev with respect to β
is (see Lemma 4.4.2)

∂`Csev
∂β

(ξ, β; z) =

m∑
j=1

(
d−1∑
k=a

zjk S2(ξ, β, j, k) + zjd
sj,d−1

β2 + ξβsj,d−1

)

≥
m∑
j=1

d−1∑
k=a

zjk S2(ξ, β, j, k).

3.: The proof of this part is in line with Orme and Ruud [OR02] adapted to
the special situation here. First of all, de�ne for each ξ ∈ R≥0 the function

fξ : R>0 → R : β 7−→ `Csev(ξ, β; z).

The �rst statement of this proposition indicates that for each ξ ∈ R≥0 there is
a unique point β∗(ξ) ∈ R>0 satisfying

dfξ
dβ

(β∗(ξ)) =
∂`Csev
∂β

(ξ, β∗(ξ); z) = 0.

The �rst statement also yields that the sign of fξ changes from positive to neg-
ative at β∗(ξ). Hence, β∗(ξ) is not only the unique stationary point of fξ, but
it also is a maximizer of fξ and therefore a global maximizer.
Now, have a look at

g : R≥0 → R : ξ 7−→ fξ(β
∗(ξ)) = max

β∈R>0

fξ(β).
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The Implicit Function Theorem [For99, pp. 68�71] ensures that ξ 7→ β∗(ξ) is
continuously di�erentiable. Thus, the �rst derivative4 of g is

dg
dξ

(ξ) =
∂`Csev
∂ξ

(ξ, β∗(ξ); z) + dβ∗

dξ
(ξ)

dfξ
dβ

(β∗(ξ)) =
∂`Csev
∂ξ

(ξ, β∗(ξ); z).

Hence, ξ is a root of the derivative of g if and only if (ξ, β∗(ξ)) is a stationary
point of `Csev( · ; z). Consequently, it holds{

(ξ, β) ∈ Θsev

∣∣∣grad
(
`Csev(ξ, β; z)

)
=0
}

=
{

(ξ, β) ∈ Θsev

∣∣∣β=β∗(ξ), dg
dξ

(ξ)=0
}
.

The only thing remaining to be done is to show that dg
dξ

has got at most one
root.
For this goal, keep in mind that

ϕ1

(
ξ
β
, a
) a

β2 + ξβa
=

{
1
ξ2

log
(

1 + ξ
β
a
)
− β

ξ
a

β2+ξβa
, if ξ > 0,

a
2

a
β2+ξβa

, if ξ = 0.

Hence, with the de�nition

h(ξ, β; z) :=

m∑
j=1

d−1∑
k=1

zjk

 log
(

1 + ξ
β
sj,k−1

)
1− F∗sev(tjk)

F∗sev(tj,k−1)

−
log
(

1 + ξ
β
sjk
)

F∗sev(tj,k−1)

F∗sev(tjk)
− 1


+

m∑
j=1

zjd log
(

1 + ξ
β
sj,d−1

)
the partial derivative of `Csev with respect to ξ is

∂`Csev
∂ξ

(ξ, β; z) =
1

ξ2
h(ξ, β; z)− β

ξ
∂`Csev
∂β

(ξ, β; z) ∀ξ, β ∈ R>0,

and therefore
dg
dξ

(ξ) =
1

ξ2
h(ξ, β∗(ξ); z) ∀ξ, β ∈ R>0.

Let ξ0 be a root of dg
dξ
. If ξ0 ∈ R>0, the de�nitions of β∗(ξ0) and h ensure

∂`Csev
∂β

(ξ0, β
∗(ξ0); z) = 0 = h(ξ0, β

∗(ξ0); z).

The terms ∂`Csev
∂β

(or rather β2 ∂`
C
sev
∂β

) and h are very similar to each other. They
only di�er in the terms

sjk

1 + ξ
β
sjk

and log
(

1 + ξ
β
sjk
)
.

4at ξ = 0 this means the right derivative
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While
sjk

1+xsjk
is strictly decreasing, log(1 + xsjk) is strictly increasing (both as

functions with respect to x). And
sjk

1+xsjk
decreases even faster than

sj,k−1

1+xsj,k−1
,

while log(1 + xsjk) increases faster than log(1 + xsj,k−1). A variation of ξ0,
ξ0 → ξ0 + dξ, increases ξ0

β∗(ξ0)
,

ξ0
β∗(ξ0)

<
ξ0 + dξ

β∗(ξ0 + dξ)
,

because β∗(ξ) is decreasing as function with respect to ξ (all the β∗jk(ξ) are
decreasing, see Lemma A.3 in the appendix). But it still keeps by de�nition

∂`Csev
∂β

(
ξ0 + dξ, β∗(ξ0 + dξ); z

)
= 0.

At the same time, the di�erent behavior of
sjk

1+
ξ0

β∗(ξ0)
sjk

and log
(

1 + ξ0
β∗(ξ0)

sjk
)

must lead to
h
(
ξ0 + dξ, β∗(ξ0 + dξ); z

)
< 0.

The fact h
(
ξ0 − dξ, β∗(ξ0 − dξ); z

)
> 0 can be veri�ed in the same way.

All this means that the sign of dg
dξ

changes from positive to negative at all its
positive roots. For continuity reasons this is even true if ξ0 = 0. In other words,
it holds

d2g
dξ2

(ξ) < 0 ∀ξ ∈
{
x ∈ R≥0

∣∣∣ dg
dξ

(x) = 0
}
.5

Hence, every stationary point of g automatically is a maximizer of g and the
maximum is an isolated one. Assume that g has more than one stationary point
and ξ1 and ξ2 are two of them. Then, due to the Theorem of Maximum and
Minimum for Continuous Functions (sometimes Weierstrass' Theorem) [For04,
p. 106] there is a ξ3 ∈ (ξ1, ξ2) such that g(ξ3) ≤ g(ξ) for all ξ ∈ [ξ1, ξ2]. This ξ3
must satisfy

dg
dξ

(ξ3) = 0 and d2g
dξ2

(ξ3) ≥ 0.

But it has been shown, that such a ξ3 does not exist.
All in all, g have at most one stationary point, and therefore `Csev only have at

most one stationary point. This point (ξ0, β
∗(ξ0)) satis�es (if it exists)

`Csev(ξ0, β
∗(ξ0); z) = g(ξ0) > g(ξ) = `Csev(ξ, β∗(ξ); z) ≥ `Csev(ξ, β; z)

for all ξ ∈ R≥0 \ {ξ0} and β ∈ R>0. Consequently, (ξ0, β
∗(ξ0)) is the unique

stationary point and the maximizer of `Csev( · ; z).

The results of the last proposition are just a small step away from the state-
ment that the maximum likelihood estimator of (ξ, β) exists (i. e. there is a

5at ξ = 0 d

dξ
means the right derivative
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unique global maximizer of `Csev) if there is at least one nonempty medium class.
If someone has found a stationary point of `Csev, Proposition 4.4.3 ensures that
this is the maximum likelihood estimator. On the other hand, if there is no
stationary point, `Csev still has a unique maximizer. This is the statement of the
following theorem.

4.4.4 Theorem. Let z = (zjk) 1≤j≤m
1≤k≤d

∈ N0
m×d be a realization of

(
Z v(j)

)
1≤j≤m

where d ∈ N≥3.

1. If there is a (j0, k0) ∈ N≤m × {2, . . . , d− 1} such that zj0k0 > 0, then the
maximum likelihood estimator of (ξ, β) based on z exists.

2. If either
∑m
j=1

∑d
k=2 zjk = 0 or

∑m
j=1

∑d−1
k=1 zjk = 0, then the maximum

likelihood estimator of (ξ, β) based on z does not exist, since the likelihood
function as function with respect to (ξ, β) does not have a maximum.

3. Suppose, the class limits are chosen such that

max
1≤j≤m

tj1 < min
1≤j≤m

tj,d−1.

If
∑m
j=1

∑d−1
k=2 zjk = 0, then the maximum likelihood estimator of (ξ, β)

based on z does not exist, since the likelihood function as function with
respect to (ξ, β) does not have a maximum.

Proof. 1.: Suppose, (ξ0, β0) is a stationary point of `Csev( · ; z) with ξ0 ∈ R>0,
i. e. it holds grad

(
`Csev(ξ0, β0; z)

)
= 0. The third statement in Proposition 4.4.3

provides that this stationary point is unique and that it must be the maximum
likelihood estimator of (ξ, β).
Suppose, `Csev( · ; z) does not have any stationary point in R>0

2. For all
(ξ0, β0) ∈

(
R≥0 × {0,∞}

)
∪
(
{∞}×R≥0

)
∪
(
{∞}× {∞}

)
it holds according to

Lemma A.1 in the appendix

lim
ξ→ξ0
β→β0

`Csev(ξ, β; z) = lim
ξ→ξ0
β→β0

m∑
j=1

d∑
k=1

zjk log
(
pAjk

)
= −∞.

This means that `Csev( · ; z) approaches−∞ on the boundary of its domain. Hence,
`Csev( · ; z) must have a maximum. A maximizer cannot be an element ofR>0

2, be-
cause there are no stationary points. Instead, it must be an element of {0}×R>0.
The function `Csev(0, · ; z) has a unique maximizer β∗(0) (see �rst statement of
Proposition 4.4.3). It follows that (0, β∗(0)) is the maximum likelihood estima-
tor based on z.

2./3.: The proof is established if it can be shown that the shifted generalized
Pareto distribution satis�es all the conditions in Theorem 4.4.1.
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A glance at the shifted generalized Pareto distribution at the beginning of this
Section 4.4 reveals that Fsev is strictly increasing and

Fsev(t; ξ, β) < 1 ∀t ∈ R and Fsev(t; ξ, β) > 0 ∀t ∈ R>usev .

Moreover, Lemma A.1 in the appendix helps to verify that for any a ∈ (0, 1) it
holds

lim
ξ→∞

Fsev
(
t; ξ, aξ

)
= 1− a ∀t ∈ R>usev

and

lim
β→0

Fsev(t; ξ, β) = 1 ∀t ∈ R>usev and lim
β→∞

Fsev(t; ξ, β) = 0 ∀t ∈ R.

Proposition 4.4.3 provides not only the existence of a maximum likelihood
estimator (see Theorem 4.4.4), but it also supplies a way to localize it. Partic-
ularly, it gives a criterion when to choose the exponential model (ξ = 0) or the
Pareto model (ξ ∈ R>0). The next corollary states this criterion.

4.4.5 Corollary. Let the situation be as in Proposition 4.4.3 with the roots β◦(ξ)

and β∗(ξ) from there. Suppose, (ξ̂m, β̂m) is the maximum likelihood estimator of

(ξ, β) based on z. If ξ̂m(z) > 0, then, for all ξ ∈ R≥0, it is equivalent

ξ S ξ̂m(z) ⇔ β∗(ξ) S β◦(ξ).

Moreover, it is ξ̂m(z) = 0 if and only if β◦(0) ≤ β∗(0).

Proof. If ξ̂m(z) > 0, the maximum likelihood estimator
(
ξ̂m(z), β̂m(z)

)
is a root

of the gradient of `Csev( · ; z) and therefore

β◦(ξ̂m(z)) = β̂m(z) = β∗(ξ̂m(z)).

The rest of the proof needs the function g which is de�ned in the proof of the
third statement of Proposition 4.4.3,

g : R≥0 → R : ξ 7−→ `Csev(ξ, β∗(ξ); z) = max
β∈R>0

`Csev(ξ, β; z).

The chain rule from di�erential calculus [For99, p. 48] yields the derivatives of g,

dg
dξ

(ξ) =
∂`Csev
∂ξ

(ξ, β∗(ξ); z) + dβ∗

dξ
(ξ)

∂`Csev
∂β

(ξ, β∗(ξ); z) =
∂`Csev
∂ξ

(ξ, β∗(ξ); z),

d2g
dξ2

(ξ) =
∂2`Csev
∂ξ2

(ξ, β∗(ξ); z) + dβ∗

dξ
(ξ)

∂2`Csev
∂β∂ξ

(ξ, β∗(ξ); z).



100 4. Parameter Estimation

In the proof of the third statement of Proposition 4.4.3 it is argued that

d2g
dξ2

(ξ̂m(z)) < 0.

Furthermore, from the �rst statement of Proposition 4.4.3 it follows

∂2`Csev
∂β∂ξ

(
ξ̂m(z), β◦(ξ̂m(z)); z

)
< 0.

All together it is

dβ∗

dξ
(ξ̂m(z)) > −

∂2`Csev
∂ξ2

(
ξ̂m(z), β◦(ξ̂m(z)); z

)
∂2`Csev
∂β∂ξ

(
ξ̂m(z), β◦(ξ̂m(z)); z

) = dβ◦

dξ
(ξ̂m(z)).

The last equality comes from the Implicit Function Theorem [For99, pp. 68�71].
Summarized, it holds

β∗(ξ̂m(z))− β◦(ξ̂m(z)) = 0 and
d

dξ

(
β∗(ξ̂m(z))− β◦(ξ̂m(z))

)
> 0.

Hence, there is an ε such that for all ξ ∈
[
ξ̂m(z)− ε, ξ̂m(z) + ε

]
it is equivalent

ξ S ξ̂m(z) ⇔ β∗(ξ) S β◦(ξ).

Since `Csev has no other stationary points (see Proposition 4.4.3), ξ = ξ̂m(z) is the
only value which satis�es β◦(ξ) = β∗(ξ). Furthermore, the functions β◦ and β∗

are continuous due to the Implicit Function Theorem [For99, pp. 68�71]. Hence,
the equivalence must hold for all ξ ∈ R≥0.
It has been proven that β◦(0) > β∗(0) if ξ̂m(z) > 0. Conversely, if β◦(0)

is greater than β∗(0), the �rst statement in Proposition 4.4.3 provides that
∂`Csev
∂ξ

(0, β∗(0); z) is positive. This implies the existence of an ε ∈ R>0 with
the property

`Csev(ε, β∗(0); z) > `Csev(0, β∗(0); z) .

Hence, it cannot be ξ̂m(z) = 0 if β◦(0) > β∗(0).

This corollary supplies a concrete algorithm for the calculation of the max-
imum likelihood estimator of (ξ, β): �rst, compute the roots β◦(0), β∗(0) and
compare them with each other. If β◦(0) ≤ β∗(0), the maximum likelihood esti-
mator is found, (ξ̂m, β̂m) = (0, β∗(0)). Otherwise, take a ξ ∈ R>0 large enough

such that β◦(ξ) < β∗(ξ) or, equivalently, ∂`
C
sev
∂ξ

(ξ, β∗(ξ); z) < 0. Then, it must be

ξ̂m ∈ (0, ξ). Now, a simple bisection method can approx the actual maximum
likelihood estimator ξ̂m up to the desired precision. Section 5.5 works out this
procedure in detail.
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4.4.3. Con�dence Intervals

When observing uncensored, statistically independent and generalized Pareto
distributed variates, the maximum likelihood estimators of ξ and β are consis-
tent and asymptotically e�cient as long as ξ ∈ R>− 1

2
[Smi84, HW87]. Also

here, where only the counts per class can be observed, the numerical results in
Section 5.5.2 suggest for ξ ∈ R>0 that (ξ̂m, β̂m) is asymptotically e�cient, i. e.
the maximum likelihood estimator (ξ̂m, β̂m) is asymptotically jointly normally
distributed with mean (ξ, β) and the inverse of the Fisher information matrix as
covariance matrix (see Section 2.4.3). Due to Theorem 4.2.2, the inverse of the
Fisher information matrix concerning ξ and β is

Isev(µ, ξ, β)−1

=
1

µγ(ξ, β)

m∑
j=1

d−1∑
k=1

lj
bjk(ξ, β)

 a2jk(ξ, β)2 −a1jk(ξ, β) a2jk(ξ, β)

− a1jk(ξ, β) a2jk(ξ, β) a1jk(ξ, β)2

,
with aijk, bjk as de�ned there and

γ(ξ, β) :=

2∏
i=1

(
m∑
j=1

lj

d−1∑
k=1

aijk(ξ, β)2

bjk(ξ, β)

)
−

(
m∑
j=1

lj

d−1∑
k=1

a1jk(ξ, β) a2jk(ξ, β)

bjk(ξ, β)

)2

.

Thus, asymptotic e�ciency means that ξ̂m is asymptotically N (ξ, σξ,m
2) dis-

tributed and β̂m is asymptotically N (β, σβ,m
2) distributed, where

σξ,m
2 :=

1

µγ(ξ, β)

m∑
j=1

lj

d−1∑
k=1

a2jk(ξ, β)2

bjk(ξ, β)
,

σβ,m
2 :=

1

µγ(ξ, β)

m∑
j=1

lj

d−1∑
k=1

a1jk(ξ, β)2

bjk(ξ, β)
.

With Z := (Z v(j))1≤j≤m this leads to

lim
m→∞

Pϑ
(
−q1−α/2 ≤ ξ̂m(Z)−ξ

σ̂ξ,m(Z)
≤ q1−α/2

)
= 1− α,

lim
m→∞

Pϑ
(
−q1−α/2 ≤ β̂m(Z)−β

σ̂β,m(Z)
≤ q1−α/2

)
= 1− α,

where q1−α/2 is the
(
1− α

2

)
100 % quantile of the standard normal distribution,

and σ̂ξ,m(Z ) equates σξ,m =
√
σξ,m2 while σ̂β,m(Z ) equates σβ,m =

√
σβ,m2 with

µ, ξ and β replaced by the estimators µ̂m(Z ), ξ̂m(Z ) and β̂m(Z ) respectively.
Eventually, if z is a realization of Z , the intervals

Cξ(α, z) :=
[
ξ̂m(z)− σ̂ξ,m(z) q1−α/2, ξ̂m(z) + σ̂ξ,m(z) q1−α/2

]
,

Cβ(α, z) :=
[
β̂m(z)− σ̂β,m(z) q1−α/2, β̂m(z) + σ̂β,m(z) q1−α/2

] (4.7)
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are approximate actual con�dence intervals of ξ and β with con�dence level
(1− α) (α ∈ (0, 1)).

If it is ξ = 0, the term (ξ̂m(Z)−ξ)/σξ,m = ξ̂m(Z)/σξ,m cannot be asymptotically
standard normally distributed, because ξ̂m is bounded below by 0. Since the
anti-diagonal of the Fisher information matrix is nonzero, the boundedness of
ξ̂m also a�ects the distribution of β̂m(Z ). The following heuristic approach shall
yield approximate con�dence intervals of ξ and β in case of ξ = 0.
For this purpose, assume for a while that also negative shape parameters are

allowed. Due to the asymptotic e�ciency, the maximum likelihood estimator of
ξ is asymptotically normally distributed with mean ξ = 0. Consequently, the
true parameter ξ = 0 is underestimated and overestimated each with probability
1/2 if the sample size m is large. Every realization z of (Z v(j))1≤j≤m which
causes an underestimation of ξ = 0 in the entire generalized Pareto model yields
ξ̂m(z) = 0 in the counting model EC. Hence, for those realizations the cumulative
distribution function of ξ̂m is

Φξ−(t) := 1R≥0
(t) ∀t ∈ R.

Basically, ξ is simply known and β is the only unknown parameter. Thus, for
those realizations β̂m is asymptotically normally distributed with mean β and
variance τβ,m2, where τβ,m2 equates the inverse of the Fisher information con-
cerning β,

τβ,m
2 :=

1

Isev(µ, ξ, β)22

=
1

µ
∑m
j=1 lj

∑d−1
k=1

a2jk(ξ,β)2

bjk(ξ,β)

(see Theorem 4.2.2). Hence, the cumulative distribution function of β̂m is

Φβ−(t) :=

∫ t

−∞

1

τβ,m
√

2π
e
− 1

2

(
x−β
τβ,m

)2

dx ∀t ∈ R.

On the other hand, a realization z of (Z v(j))1≤j≤m which causes an overesti-
mation of ξ = 0 in the entire generalized Pareto model yields ξ̂m(z) > 0 in the
counting model EC. For all these realizations, ξ̂m is asymptotically truncated
normally distributed with lower bound 0,

Φξ+(t) := 2

∫ max{t,0}

0

1

σξ,m
√

2π
e
− 1

2

(
x

σξ,m

)2

dx ∀t ∈ R.

Since the anti-diagonal of the inverse Fisher information matrix Isev(µ, ξ, β)−1

has negative entries, ξ̂m and β̂m are negative correlated for large sample sizes.
As a consequence, β̂m(z) tends to underestimate the true scale parameter β,
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because ξ̂m(z) overestimates the true shape ξ = 0. Therefore, it is worse trying
to assume that β̂m is truncated normally distributed with upper bound β. So,
it has the cumulative distribution function

Φβ+(t) := 2

∫ min{t,β}

−∞

1

σβ,m
√

2π
e
− 1

2

(
x−β
σβ,m

)2

dx ∀t ∈ R.

Near the true scale β the approximation of the distribution of β̂m through Φβ+

is expected to be bad, because β̂m is not really bounded from above. However,
the results presented in Section 5.5.3 o�er that this approach yields an adequate
approximation of the extreme quantiles.
Eventually, the approximate cumulative distribution functions Φξ of ξ̂m and

Φβ of β̂m are

Φξ(t) :=
Φξ−(t) + Φξ+(t)

2
=
1R≥0

(t)

σξ,m
√

2π

∫ t

−∞
e
− 1

2

(
x

σξ,m

)2

dx,

Φβ(t) :=
Φβ−(t) + Φβ+(t)

2

=

∫ t

−∞

(
1R≤β (x)

σβ,m
√

2π
e
− 1

2

(
x−β
σβ,m

)2

+
0.5

τβ,m
√

2π
e
− 1

2

(
x−β
τβ,m

)2)
dx,

(4.8)

If Φ−1
ξ denotes the inverse of Φξ : R≥0 → R≥1/2, and Φ−1

β denotes the inverse of
Φβ , then it holds

Φ−1
ξ (1− α) = σξ,m q1−α and Φ−1

β

(
1− α

2

)
= β + τβ,m q1−α ∀α ∈ (0, 0.5],

where q1−α is the (1−α) 100 % quantile of the standard normal distribution. All
in all, the intervals

C0
ξ (α, z) :=

[
0, σ̂ξ,m(z) q1−α

]
,

C0
β(α, z) :=

[
Φ̂−1
β

(
α
2

)
, β̂m(z) + τ̂β,m(z) q1−α

] (4.9)

can be taken as approximate actual con�dence intervals of ξ and β with con�-
dence level (1 − α) if ξ̂m is estimated to be ξ̂m = 0 (α ∈ (0, 0.5]), where Φ̂−1

β ,
σ̂ξ,m(z), σ̂β,m(z) and τ̂β,m(z) equate Φ−1

β , σξ,m(z), σβ,m(z) and τβ,m(z), respec-

tively, with µ, ξ and β replaced by the estimators µ̂m(z), ξ̂m(z) and β̂m(z),
respectively.

4.4.4. Equidistant Class Limits and Optimal Class Length

The BMW Group's study which provides the data for distribution �tting (see
Section 2.1) is based on an experimental design with classes of equal length.
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Accordingly, there is a Λ ∈ R>0 such that

Λ = tjk − tj,k−1 ∀j ∈ N≤m, ∀k ∈ N≤d−1.

Λ is simply called class length. In this situation the class limits can be expressed
as

tjk = usev + kΛ ∀j ∈ N≤m, ∀k ∈ N≤d−1.

This choice of class limits reveals an advantage when deciding whether the expo-
nential model (ξ = 0) or the Pareto model (ξ ∈ R>0) should be used. Corollary
4.4.5 provides that the maximum likelihood estimator ξ̂m is equal to 0 if and

only if the root of ∂`Csev
∂ξ

(0, · ; z) does not exceed the root of ∂`Csev
∂β

(0, · ; z). In
the counting model with equidistant class limits these roots can be calculated

analytically. The root of ∂`
C
sev
∂β

(0, · ; z) was also found by Kulldor� [Kul61, p. 28].

4.4.6 Lemma. Let z = (zjk) 1≤j≤m
1≤k≤d

∈ N0
m×d be a realization of (Z v(j))1≤j≤m

such that
∑m
j=1

∑d−1
k=1 zjk > 0 and

∑m
j=1

∑d
k=2 zjk > 0. If the class lengths are

all equal to Λ (Λ ∈ R>0), the points

β◦0 :=
Λ

log

(
1 +

∑m
j=1

∑d−1
k=1

(2k−1)zjk∑m
j=1

∑d
k=2

(k−1)2zjk

) , β∗0 :=
Λ

log

(
1 +

∑m
j=1

∑d−1
k=1

zjk∑m
j=1

∑d
k=2

(k−1)zjk

)

are the unique roots of
∂`Csev
∂ξ

(0, · ; z) and
∂`Csev
∂β

(0, · ; z) respectively, i. e.

∂`Csev
∂ξ

(0, β◦0 ; z) = 0 and ∂`Csev
∂β

(0, β∗0 ; z) = 0,

and both derivatives as function with respect to β change their sign from positive
to negative at the particular root.

Proof. If it is chosen ξ = 0 and tjk = usev+kΛ for all j ∈ N≤m and k ∈ N≤d−1,
then

1− Fsev(tjk)

1− Fsev(tj,k−1)
=

1− Fsev(usev + kΛ)

1− Fsev(usev + (k − 1)Λ)
= e
− 1
β

Λ ∀j ∈ N≤m, ∀k ∈ N≤d−1.

Hence, the partial derivatives of `Csev given in Lemma 4.4.2 can be rewritten as

∂`Csev
∂ξ

(0, β; z) =
Λ2

2β2

m∑
j=1

(
d−1∑
k=1

zjk

(
(k − 1)2

1− e
− 1
β

Λ
− k2

e
1
β

Λ − 1

)
+ zjd(d− 1)2

)

=
Λ2

2β2(e
1
β

Λ − 1)

(
m∑
j=1

d∑
k=2

(k − 1)2zjk

)(
e

1
β

Λ − e
1
β◦0

Λ
)
,
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and

∂`Csev
∂β

(0, β; z) =
Λ

β2

m∑
j=1

(
d−1∑
k=1

zjk

(
k − 1

1− e
− 1
β

Λ
− k

e
1
β

Λ − 1

)
+ zjd(d− 1)

)

=
Λ

β2(e
1
β

Λ − 1)

(
m∑
j=1

d∑
k=2

(k − 1)zjk

)(
e

1
β

Λ − e
1
β∗0

Λ
)
.

Thus, the derivatives both have each a unique root and they chance their sign
from positiv to negative at the particular root.

It is not di�cult to compare the roots β◦0 and β∗0 from Lemma 4.4.6 with
each other and to apply Corollary 4.4.5 thereafter. The result of this forms the
following corollary.

4.4.7 Corollary. Suppose it is d ∈ N≥3. Let the situation be as in Lemma 4.4.6
with the roots β◦0 and β∗0 from there, then the following statements are equivalent:

(i) The root of
∂`Csev
∂ξ

(0, · ; z) is not greater than the root of
∂`Csev
∂β

(0, · ; z),

β◦0 ≤ β∗0 .

(ii) It holds

(
y1 . . . yd−1

) c11 . . . c1,d−1

...
. . .

...
cd−1,1 . . . cd−1,d−1


y2

...
yd

 ≤ 0,

where

yk :=

m∑
j=1

zjk and ckk′ := (1− 2k + k′)k′ ∀k, k′ ∈ N≤d−1.

(iii) The maximum likelihood estimator (ξ̂m, β̂m) of (ξ, β) based on z is given by(
ξ̂m(z), β̂m(z)

)
= (0, β∗0 ).

Proof. (i)⇔ (ii): From the de�nitions of β◦0 and β∗0 in Lemma 4.4.6 it follows
that the condition β◦0 ≤ β∗0 is equivalent to the two equivalent relations∑d−1

k=1(2k − 1)yk∑d−1
k′=1 k

′2yk′+1

≥
∑d−1
k=1 yk∑d−1

k′=1 k
′yk′+1

⇔ 0 ≥
d−1∑
k=1

d−1∑
k′=1

k′(k′ − 2k + 1) yk yk′+1.
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The right-hand side of the last inequality is nothing else than the result of the
matrix product in the second statement.

(iii)⇔ (i): If
∑m
j=1

∑d−1
k=2 zjk = 0, it is always

β◦0 =
Λ

log
(

1 + y1
(d−1)2 yd

) > Λ

log
(

1 + y1
(d−1) yd

) = β∗0 .

On the other hand, due to Theorem 4.4.4, the maximum likelihood estimator
does not exist.
Otherwise, the maximum likelihood estimator exists (see Theorem 4.4.4). Ev-

erything else follows from Corollary 4.4.5.

This corollary yields some interesting conclusions. Suppose, for instance, that
only the two lowest classes are �lled, i. e.

∑m
j=1

∑d
k=3 zjk = 0, then the matrix

product in the second statement of corollary 4.4.7 is(
m∑
j=1

zj1

)(
m∑
j=1

zj2

)
c11 +

(
m∑
j=1

zj2

)2

c21 = −2

(
m∑
j=1

zj2

)2

< 0.

Consequently, in this situation the maximum likelihood method always prefers
the exponential model,

(
ξ̂m(z), β̂m(z)

)
= (0, β∗0 ). If only one single class is �lled,

i. e.
∑m
j=1

∑d
k=1 zjk =

∑m
j=1 zjk0 for an k0 ∈ {2, . . . , d−1}, the exponential model

is preferred, too, because then the matrix product in the second statement of
corollary 4.4.7 is(

m∑
j=1

zjk0

)2

ck0,k0−1 = −k0(k0 − 1)

(
m∑
j=1

zjk0

)2

< 0.

In both situations there is not enough information about the shape of Fsev, and
so the shape parameter ξ is estimated to be 0.

Besides the possibility of calculating the roots of the partial derivatives of
`Csev analytically, a second advantage with regard to equidistant class limits is
the existence of some kind of optimal class length. In this context, optimality
means that the accuracy of estimate can be optimized by choosing a certain
class length. Suppose, the chosen class length is extremely high, Λ → ∞, then,
with probability tending to one, any SOLE will be observed in the lowest class,
(usev, usev + Λ]. On the other hand, in case of Λ → 0, only the highest class,
(usev + (d − 1)Λ,∞), has the chance to get �lled. In both cases there is not
enough information to estimate (ξ, β) (see Theorem 4.4.4). This fact is also
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re�ected by the Fisher information matrix concerning ξ and β, Isev(µ, ξ, β) (see
Theorem 4.2.2), because with equidistant class limits it holds

lim
Λ→0,∞

Isev(µ, ξ, β) = µ

m∑
j=1

lj

(
0 0
0 0

)
= 0.

Indeed, each entry of the 2 × 2 matrix Isev(µ, ξ, β) as function with respect to
Λ grows up until a unique maximum is achieved and decreases to 0 again as Λ
approaches ∞. As long as d ∈ N≥3, the determinant of Isev(µ, ξ, β) as function
with respect to Λ,

det
(
Isev(µ, ξ, β)

)
=

(
µ

m∑
j=1

lj

)2
 2∏
i=1

d−1∑
k=1

ai1k(ξ, β)2

b1k(ξ, β)
−

(
d−1∑
k=1

a11k(ξ, β) a21k(ξ, β)

b1k(ξ, β)

)2


(aijk, bjk as de�ned in Theorem 4.2.2), behaves the same way.
This behavior together with the asymptotic e�ciency of the maximum likeli-

hood estimator of (ξ, β) brings about a plausible de�nition of an optimal class
length. Based on the principle of D-optimality from theory of experimental
design [AD92, Puk06], the optimal class length shall be the maximizer of the
determinant of the concerning Fisher information matrix. Since the con�dence
intervals of ξ and β are derived from the inverse of the Fisher information matrix,
maximizing the determinant means minimizing the volume of the (asymptotic)
con�dence region.

4.4.8 De�nition. In the counting model with equidistant class limits the op-
timal class length Λopt is the class length which maximizes the determinant
of Isev(µ, ξ, β) from Theorem 4.2.2.

As an example, let us calculate the optimal class length in the particular
case that ξ = 0. For this purpose, the following corollary brings the matrix
Isev(µ, ξ, β) into an easily viewable structure.

4.4.9 Corollary. De�ne for n ∈ {1, 2, 3} the polynomials Rn and the terms Qn
by

R1(x) := 1− xd−1,

R2(x) := 1
2

+ 1
2
x−

(
d− 1

2

)
xd−1 +

(
d− 3

2

)
xd,

R3(x) := 1
4

+ 3
2
x+ 1

4
x2 −

(
d− 1

2

)2
xd−1 +

(
2d2 − 4d+ 1

2

)
xd −

(
d− 3

2

)2
xd+1,

Qn(x) := x (− log(x))1+n (1− x)−(1+n) Rn(x),
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for all x ∈ (0, 1). If the class lengths are all equal to Λ, the matrix Isev(µ, ξ, β)
from Theorem 4.2.2 reads for ξ = 0 as follows:

Isev(µ, 0, β) = µ

m∑
j=1

lj

 Q3

(
e
− 1
β

Λ
)

1
β
Q2

(
e
− 1
β

Λ
)

1
β
Q2

(
e
− 1
β

Λ
)

1
β2 Q1

(
e
− 1
β

Λ
)
 .

Thus, the determinant of Isev(µ, 0, β) is

det
(
Isev(µ, 0, β)

)
=

(
µ
∑m
j=1 lj

β

)2

Q0

(
e
− 1
β

Λ
)
,

where, for all x ∈ (0, 1),

Q0(x) := x3 log(x)6 (1− x)−6 R0(x),

R0(x) := 1− (d− 1)2xd−2 + (2d2 − 4d)xd−1 − (d− 1)2xd + x2d−2.

Proof. If sjk = tjk−usev = kΛ for all j ∈ N≤m and k ∈ N≤d−1, the terms aijk,
bjk in Theorem 4.2.2 satisfy

a1jk(0, β) =
(
k − 1

2

)
Λ2, a2jk(0, β) = Λ, bjk(0, β) = β4

(
1− e

− 1
β

Λ
)

e
1
β
kΛ
,

and therefore

d−1∑
k=1

aijk(0, β) ahjk(0, β)

bjk(0, β)
=

Λ6−i−h

β4
(

1− e
− 1
β

Λ
) d−1∑
k=1

(
k − 1

2

)4−i−h (
e
− 1
β

Λ
)k

for all i, h ∈ {1, 2}. For all a ∈ {1, 2, 3}, the relation

d−1∑
k=1

(
k − 1

2

)a−1
xk =

xRa(x)

(1− x)a
∀x ∈ R>0

can easily be veri�ed via mathematical induction on d (d ∈ N≥2).
The determinant of Isev(µ, 0, β) is

det
(
Isev(µ, 0, β)

)
=

(
µ
∑m
j=1 lj

β

)2 (
Q1Q3 −Q2

2)(e− 1
β

Λ)
.

The fact that xR0(x) = R1(x)R3(x)−R2(x)2 for all x ∈ R �nishes the proof.
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All the Rn from Corollary 4.4.9 satisfy Rn(1) = 0 (n ∈ {0, . . . , 3}). Moreover,
l'Hôpital's Rule [For04, p. 171] helps to verify

lim
x↘0

xn1(− log(x))n2 =

(
lim
x↘0

log(x)

−x−
n1
n2

)n2

=

(
lim
x↘0

n2

n1
x
n1
n2

)n2

= 0 ∀n1, n2 ∈ N,

lim
x↗1

− log(x)

1− x = lim
x↗1

1

x
= 1.

Therefore, the Qn from Corollary 4.4.9 (n ∈ {0, . . . , 3}) have the characteristics

lim
x↘0

Qn(x) = 0, lim
x↗1

Qn(x) = 0 and Qn(x) > 0 ∀x ∈ (0, 1),

and so they each must have a maximizer. In fact, each Qn has got a unique
maximizer which shall be denoted by Λ̃d,n (the polynomials Rn depend on the
number of classes d). The Λ̃d,n can be found by calculating the derivatives of
the Qn,

dQ0
dx

(x) = Q0(x)

(
3

x
+

6

x log(x)
+

6

1− x +
dR0
dx

(x)

R0(x)

)
,

dQn
dx

(x) = Qn(x)

(
1

x
+

1 + n

x log(x)
+

1 + n

1− x +
dRn
dx

(x)

Rn(x)

)
∀n ∈ {1, 2, 3},

because the maximizers Λ̃d,n are the unique roots of these derivatives. The Qn
are positive on (0, 1), and so the maximizers satisfy the equation(s)(

1 +
1 + n+ 1{0}(n)

log(x)
+

1 + n+ 1{0}(n)
1
x
− 1

+
x dRn

dx
(x)(

1 + 2·1{0}(n)
)
Rn(x)

∣∣∣∣∣
x=Λ̃d,n

= 0.

Since Λ̃d,0 is the maximizer of Q0, the optimal class length in the sense of

De�nition 4.4.8 must satisfy e
− 1
β

Λopt = Λ̃d,0 (see Corollary 4.4.9) or, equivalently,

Λopt = − log
(

Λ̃d,0
)
β.

Particularly, Λopt is a linear function with respect to the parameter β. Inciden-
tally, this is true even if ξ > 0. This follows from the fact that det(Isev(µ, ξ, β)),
or rather β2 det(Isev(µ, ξ, β)), does not really depend on β and Λ but on the
quotient Λ/β. Section 5.5.4 expounds this in detail. In addition, it presents some
numerical results for the optimal class length. The results endorse some partic-
ular results of Kulldor� [Kul61, pp. 34�36] with regard to optimal grouping.
It is not surprising that the optimal class length depends on the values of

the parameters ξ and β. The parameters determine the range where most of the
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SOLEs will lie, and the class length is optimal if the classes are just large enough
to cover this range evenly. Consequently, the design of the experiment can be
optimized only if a rough estimate of ξ and β is available in preparation of the
data collection. In addition, it is conceivable that the class length is optimized
iteratively over the course of the experiment.

4.5. Estimating the Severity of a SOLE in the

Counting-Maximum Model

Similar to the situation at the beginning of Section 4.4, also here Fsev denotes
the cumulative distribution function of a shifted generalized Pareto distribution.
But this time the parameters ξ and β shall be estimated based on the counts
and on the maximum SOLEs as described in Section 4.1 and Section 4.2.2. In
big parts the counting-maximum model can be traced back to a related counting
model. In this way, the results from Section 4.4 can be used here. In this context,
related means the following:
Suppose, (z, x) is a realization of

(
Z v(j),Mv(j)

)
1≤j≤m,

z = (zjk) 1≤j≤m
1≤k≤d

∈ N0
m×d and x = (xj)1≤j≤m ∈ ({0} ∪R>usev)m,

and k1, . . . , km are the classes that contain the maximum SOLEs,

kj :=

d∑
k=1

k 1Ajk (xj) ∀j ∈ N≤m.

Without loss of generality it is x ∈ R>usevm, because the observations without
any SOLE do not in�uence the likelihood function (see Proposition 4.2.1). A
glance at the log-likelihood function `CMsev in Proposition 4.2.1 as well as the
discussion in connection with Theorem 3.4.4 induce to de�ne new class limits

tjk :=


tjk, if k ∈ {0, . . . , kj − 1},
xj , if k = kj ,

∞, if k = kj + 1,

and sjk := tjk − usev,

which leads to the new partitioning

Bj1 := (usev, tj1], Bj2 := (tj1, tj2], . . . , Bj,kj+1 := (tj,kj ,∞) ∀j ∈ N≤m.

Notice that the number of classes has been changed. For a �xed j ∈ N≤m the
new number of classes is kj + 1. Particularly, if xj ∈ (tj,d−1,∞), the detection



4.5. Estimating the Severity of a SOLE in the Counting-Maximum Model 111

range S is even divided into kj +1 = d+1 classes. However, de�ne for any given
y = (yjk) 1≤j≤m

1≤k≤d+1
∈ N0

m×d+1 the function `Csev( · ; y) by

`Csev(ξ, β; y) :=

m∑
j=1

kj+1∑
k=1

yjk log
(
pBjk

)
=

m∑
j=1

kj+1∑
k=1

yjk log
(
Fsev

(
tjk
)
− Fsev

(
tj,k−1

))
,

(4.10)

and modify the counts z in two di�erent ways by de�ning z := (zjk) 1≤j≤m
1≤k≤d+1

and

z̃ := (z̃jk) 1≤j≤m
1≤k≤d+1

with

zjk :=


zjk, if k ∈ N≤kj−1,

zjk − 1, if k = kj ,

1, if k = kj + 1,

0, if k ∈ {kj + 2, . . . , d+ 1},

z̃jk :=


zjk, if k ∈ N≤kj−1,

zjk − 1, if k = kj ,

0, if k ∈ {kj + 1, . . . , d+ 1}.

Based on all these modi�cations the following fact can be noted.

4.5.1 Lemma. In the previously described situation it holds for all (ξ, β) ∈ Θsev

`CMsev(ξ, β; z, x) = `Csev(ξ, β; z̃) +

m∑
j=1

log

(
1−Fsev(xj)
β+ξsjkj

)

= `Csev(ξ, β; z)−
m∑
j=1

log
(
β + ξsjkj

)
.

Proof. The de�nitions in the run-up of this lemma and the results of Proposition
4.2.1 ensure

`CMsev(ξ, β; z, x) =

m∑
j=1

kj∑
k=1

zjk log
(
pBjk

)
+

m∑
j=1

log
(

dFsev
dt

(xj)
)

= `Csev(ξ, β; z̃) +
m∑
j=1

log
(

dFsev
dt

(xj)
)
.

The derivative of Fsev is

dFsev
dt

(t) =

 1
β

(
1 + ξ

β
(t− u)

)− 1+ξ
ξ
, if ξ > 0

1
β

e
− 1
β

(t−u)
, if ξ = 0

 =
1− Fsev(t)

β + ξ(t− u)
∀t ∈ R>usev .
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Due to sjkj = tjkj − usev = xj − usev, this means

log
(

dFsev
dt

(xj)
)

= log
(
1− Fsev

(
tjkj

))
− log

(
β + ξsjkj

)
= log

(
pBj,kj+1

)
− log

(
β + ξsjkj

)
,

and the lemma holds.

The functions `Csev (de�ned in Proposition 4.2.1) and `Csev are in principle the
same. The only di�erence is that `Csev is based on observations with a constant
number of classes (d), while `Csev is based on observations with di�erent numbers
of classes (k1 +1, . . . , km+1). However, in principle the partial derivatives of `Csev
can be looked up in Lemma 4.4.2 (just change the summation

∑d−1
k=1 to

∑kj
k=1).

In the counting-model the maximum likelihood estimator of (ξ, β) does not
exist if the lowest or the highest classes are empty (see Theorem 4.4.4). In
the counting-maximum model the maximum likelihood estimator of (ξ, β) exists
as long as at least one SOLE has been observed. This is the statement of
the following theorem. The associated proof veri�es the existence of a global
maximum. The veri�cation of the uniqueness of this maximum would be too
much to be discussed here. Instead, it should be pointed out that the uniqueness
of the global maximum is shown for the counting model (see Proposition 4.4.3
and Theorem 4.4.4) and the similarity of `Csev and `

CM
sev (see Lemma 4.5.1) ensures

that also in the counting-maximum model the global maximum is unique.

4.5.2 Theorem. Let the situation be as de�ned in the beginning of this section,
then the maximum likelihood estimator (ξ̂m, β̂m) of (ξ, β) based on (z, x) exists.
Moreover, it holds

β̂m(z, x) ≤ max
1≤j≤m

xj − usev.

Proof. Lemma 4.5.1 provides that

`CMsev(ξ, β; z, x) ≤
m∑
j=1

log

(
1−Fsev(xj)
β+ξsjkj

)
≤ −

m∑
j=1

log
(
β + ξsjkj

)
,

because `Csev is not positive. On the one hand, l'Hôpital's Rule [For04, p. 171]
helps to verify

lim
β→0

1− Fsev(t)

β + ξ(t− usev)

=


lim
β→0

β
1
ξ (β + ξ(t− usev))

− 1+ξ
ξ , if ξ > 0,

lim
β−1→∞

β−1

e(t−usev)β−1 = lim
β−1→∞

1

(t−usev) e(t−usev)β−1 , if ξ = 0,

 = 0
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for all t ∈ R>usev . On the other hand, log
(
β + ξsjkj

)
tends to ∞ if β or ξ tend

to ∞. Hence, for all (ξ0, β0) ∈
(
R≥0 × {0,∞}

)
∪
(
{∞} ×R≥0

)
∪
(
{∞} × {∞}

)
it follows

`CMsev(ξ, β; z, x)
(ξ,β)→(ξ0,β0)−−−−−−−−−→ −∞.

This means that `CMsev( · ; z, x) approaches −∞ on the boundary of its domain.
Consequently, `CMsev( · ; z, x) has got a global maximum. As mentioned in the run-
up of this theorem, the uniqueness of this maximum can be derived from the
uniqueness of the maximum in the counting model.
To verify the upper boundary for β̂m, have a look at the partial derivative of

`CMsev ,

∂`CMsev
∂β

(ξ, β; z, x) =
∂`Csev
∂β

(ξ, β; z̃) +

m∑
j=1

∂

∂β
log

(
1−Fsev(xj)
β+ξsjkj

)

=
∂`Csev
∂β

(ξ, β; z̃) +

m∑
j=1

sjkj − β
β2 + ξβsjkj

.

With β0 := max{sjkj | 1 ≤ j ≤ m} = max{xj − usev | 1 ≤ j ≤ m} it follows

∂`CMsev
∂β

(ξ, β0; z, x) ≤ ∂`Csev
∂β

(ξ, β0; z̃) ∀ξ ∈ R≥0.

Due to the similarity of `Csev and `Csev, Proposition 4.4.3 also holds for `Csev if
the varying numbers of classes (kj + 1)1≤j≤m supersede the constant number d.
Since it is z̃j,kj+1 = 0 for all j ∈ N≤m by de�nition, the second statement of

Proposition 4.4.3 provides that ∂`Csev
∂β

(ξ, β0; z̃) is negative if there is a j ∈ N≤m
such that z̃jk > 0 for a k ∈ {2, . . . , kj}. On the other hand, if only the lowest

class is �lled,
∑m
j=1

∑kj+1

k=2 z̃jk = 0, Lemma 4.4.2 yields that ∂`Csev
∂β

(ξ, β0; z̃) is not
positive. All in all, it must be

∂`CMsev
∂β

(ξ, β0; z, x) ≤ 0 ∀ξ ∈ R≥0.

In the proof of Proposition 4.4.3 it is veri�ed that β ∂`Csev
∂β

(ξ, β; z̃) is decreasing
(as function with respect to β). Due to

∂

∂β

(
sjkj − β
β + ξsjkj

)
= −

sjkj (ξ + 1)(
β + ξsjkj

)2 < 0,

the terms (sjkj
−β)/(β+ξsjkj

) are strictly decreasing, too. Consequently, it must
hold

∂`CMsev
∂β

(ξ, β; z, x) < 0 ∀ξ ∈ R≥0, ∀β ∈ R>β0 .

Since β̂m(z, x) is a root of ∂`
CM
sev
∂β

(ξ̂m(z, x), · ; z, x), it cannot be greater than β0.
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It should be noted that searching for the maximum likelihood estimators
ξ̂m(z, x) and β̂m(z, x) works in the same way as in the counting model. Corol-
lary 4.4.5 can be formulated for the counting-maximum model as well. Thus,

compute the roots β◦(0) of ∂`
CM
sev
∂ξ

(0, · ; z, x) and β∗(0) of ∂`
CM
sev
∂β

(0, · ; z, x), �rst. If

β◦(0) ≤ β∗(0), the maximum likelihood estimator is (ξ̂m, β̂m) = (0, β∗(0)). Oth-

erwise, take a ξ ∈ R>0 large enough such that the root of ∂`
CM
sev
∂β

(ξ, · ; z, x) exceeds

the root of ∂`
CM
sev
∂ξ

(ξ, · ; z, x). Then, it must be ξ̂m ∈ (0, ξ), and a simple bisection

method can approx the real maximum likelihood estimator ξ̂m up to the desired
precision. Section 5.6 works out this procedure in detail.

In the counting model the estimation of con�dence intervals of ξ and β uses
the Fisher information from Theorem 4.2.2 due to the asymptotic e�ciency of
the maximum likelihood estimators (see intervals (4.7) on page 101). Since
the calculation of the Fisher information of the counting-maximum model is
still pending, the observed Fisher information shall be used instead. The
entries of this matrix are minus the second partial derivatives of the log-likelihood
function `CM. Since the parameters concerning the number of SOLEs, ν ∈ Θnum,
and the parameters ς = (ξ, β) ∈ Θsev can be estimated separately, it is su�cient
to look at the observed Fisher information matrix concerning ξ and β de�ned by

Isev(z, x) := −


∂2`CMsev
∂ξ2

(ξ, β; z, x)
∂2`CMsev
∂ξ∂β

(ξ, β; z, x)

∂2`CMsev
∂β∂ξ

(ξ, β; z, x)
∂2`CMsev
∂β2 (ξ, β; z, x)


∣∣∣∣∣∣∣∣ ξ=ξ̂m(z,x)

β=β̂m(z,x)

.

Under some regularity conditions the expectation of the observed Fisher infor-
mation is equal to the Fisher information matrix [LC98, p. 116]. Efron and
Hinkley [EH78] even found that sometimes the observed Fisher information is
more suitable for estimating the variance of estimators.
With standard rules from linear algebra the observed Fisher information ma-

trix can be inverted,

Isev(z, x)−1 =
1

det(Isev(z, x))

− ∂2`CMsev
∂β2 (ξ, β; z, x)

∂2`CMsev
∂ξ∂β

(ξ, β; z, x)

∂2`CMsev
∂β∂ξ

(ξ, β; z, x) − ∂
2`CMsev
∂ξ2

(ξ, β; z, x)


∣∣∣∣∣∣∣
ξ=ξ̂m(z,x)

β=β̂m(z,x)

.

Now, the calculation of actual (approximate) con�dence intervals works in the
same way as in the counting model (see calculation of the intervals (4.7) on page
101 and the intervals (4.9) on page 103) with the observed Fisher information
matrix Isev instead of the Fisher information matrix Isev. Having said that, if
ξ̂m is estimated to be ξ̂m ∈ R>0, the actual (approximate) con�dence intervals
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of ξ and β with con�dence level 1− α (α ∈ (0, 1)) are

Cξ(α, z, x) :=
[
ξ̂m(z, x)− σ̂ξ,m(z, x) q1−α/2, ξ̂m(z, x) + σ̂ξ,m(z, x) q1−α/2

]
,

Cβ(α, z, x) :=
[
β̂m(z, x)− σ̂β,m(z, x) q1−α/2, β̂m(z, x) + σ̂β,m(z, x) q1−α/2

]
,

(4.11)

respectively, where, this time,

σ̂ξ,m(z, x) := −
∂2`CMsev
∂β2

(
ξ̂m(z, x), β̂m(z, x); z, x

)
det(Isev(z, x))

,

σ̂β,m(z, x) := −
∂2`CMsev
∂ξ2

(
ξ̂m(z, x), β̂m(z, x); z, x

)
det(Isev(z, x))

,

and, again, q1−α/2 is the
(
1− α

2

)
100 % quantile of the standard normal distri-

bution. If ξ̂m = 0, the actual (approximate) con�dence intervals of ξ and β with
con�dence level 1− α (α ∈ (0, 0.5]) are

C0
ξ (α, z, x) :=

[
0, σ̂ξ,m(z, x) q1−α

]
,

C0
β(α, z, x) :=

[
Φ̂−1
β

(
α
2

)
, β̂m(z, x) + τ̂β,m(z, x) q1−α

]
,

(4.12)

respectively, where

τ̂β,m(z, x) := − 1
∂2`CMsev
∂β2

(
ξ̂m(z, x), β̂m(z, x); z, x

) ,
and Φ̂−1

β is the inverse of Φβ as de�ned in Equation (4.8) on page 103 with the
terms σ̂β,m(z, x) and τ̂β,m(z, x) from this section here (instead of σβ,m and τβ,m
respectively).
The variance terms σ̂ξ,m(z, x), σ̂β,m(z, x) and τ̂β,m(z, x) can be calculated ex-

plicitly. In order to use a compact notation, de�ne θ1 and θ2 as θ1 := ξ and
θ2 := β. Then, with the notation of Lemma 4.5.1 one gets

∂2`CMsev
∂θh∂θi

(ξ, β; z, x) =
∂2`Csev
∂θh∂θi

(ξ, β; z) +

m∑
j=1

sjkj
4−i−h

(β + ξsjkj )
2

∀i, h ∈ {1, 2}.

Due to the de�nition of `Csev in Equation (4.10) on page 111, the second partial
derivatives of `Csev are

∂2`Csev
∂θh∂θi

(ξ, β; z) =
∂

∂θh

m∑
j=1

kj+1∑
k=1

zjk

∂
∂θi

pBjk

pBjk

=
m∑
j=1

kj+1∑
k=1

zjk

 ∂2

∂θh∂θi
pBjk

pBjk
−

∂
∂θh

pBjk

pBjk

∂
∂θi

pBjk

pBjk

 ,



116 4. Parameter Estimation

and therefore

∂2`CMsev
∂θh∂θi

(ξ, β; z, x) =

m∑
j=1

kj+1∑
k=1

zjk

 ∂2

∂θh∂θi
pBjk

pBjk
−

∂
∂θh

pBjk

pBjk

∂
∂θi

pBjk

pBjk


+

m∑
j=1

sjkj
4−i−h

(β + ξsjkj )
2
.

Finally, Lemma A.1 in the appendix provides the partial derivatives of the prob-

ability terms pBjk =
(
1 + ξ

β
sj,k−1

)− 1
ξ −

(
1 + ξ

β
sjk
)− 1

ξ for k ∈ N≤kj ,

∂
∂θi

pBjk

pBjk
=
ϕi
(
ξ
β
, sj,k−1

)
sj,k−1

β2+ξβsj,k−1

1− F∗sev(tjk)

F∗sev(tj,k−1)

−
ϕi
(
ξ
β
, sjk

)
sjk

β2+ξβsjk

F∗sev(tj,k−1)

F∗sev(tjk)
− 1

,

∂2

∂θh∂θi
pBjk

pBjk
=
φhi(ξ, β, sj,k−1)

(
sj,k−1

β2+ξβsj,k−1

)2

1− F∗sev(tjk)

F∗sev(tj,k−1)

−
φhi(ξ, β, sjk)

(
sjk

β2+ξβsjk

)2

F∗sev(tj,k−1)

F∗sev(tjk)
− 1

,

and for k = kj + 1,

∂
∂θi

pBj,kj+1

pBj,kj+1

= ϕi
(
ξ
β
, sjkj

) sjkj
β2 + ξβsjkj

,

∂2

∂θh∂θi
pBj,kj+1

pBj,kj+1

= φhi
(
ξ, β, sjkj

)( sjkj
β2 + ξβsjkj

)2

,

where F ∗sev := 1− Fsev and ϕi, φhi as de�ned in Lemma A.1 (i, h ∈ {1, 2}).



5. Implementation and Results

This chapter presents some numerical results concerning the theoret-
ical model from Chapter 3 and Chapter 4. All the de�ned quantities
from the previous chapters are presumed to be known. Section 5.1
describes how to generate random samples drawn from the distribu-
tions of number of SOLEs and maximum SOLEs. Section 5.2 explores
the hypothesis test for Poisson approach from Section 3.5.3. The ap-
proximation of the distribution of the test statistic under the null
hypothesis and the power of the test are analyzed. The subsequent
three sections introduce algorithms for the calculation of the maxi-
mum likelihood estimators. Moreover, the maximum likelihood esti-
mators of exponent % of the number of SOLEs per kilometer (Section
5.3), mean µ of the number of SOLEs per kilometer (Section 5.4),
and shape ξ and scale β of the severity of SOLEs in the counting
model (Section 5.5) and in the counting-maximum model (Section
5.6) are analyzed by means of Monte Carlo simulations. Finally, a
dataset from the BMW study is evaluated based on the results from
this thesis.

5.1. Generating Random Samples

If the distributions of the number of events per kilometer and the severity
of a single event, Fnum and Fsev, are known, it is possible to generate ran-
dom samples drawn from the random variables Zl,A and M∗lsev (see De�nition
3.1.4 and De�nition 3.4.1), and from the random vectors (Zl,A1 , . . . , Zl,Ad) and
(M∗lsev, Zl,A1 , . . . , Zl,Ad), where l ∈ N, A ∈ S, d ∈ N≥2, A1, . . . , Ad ∈ S disjoint.
The direct approach for this is in line with the experimental design described
in Section 2.2. At �rst, l random numbers n1, . . . , nl drawn from Fnum must
be generated. Then, n :=

∑l
i=1 ni is the randomly generated total number of

SOLEs during l kilometers. Next, n random severities x1, . . . , xn are drawn from
Fsev. Now, just count all xi that lay within the set A, and a random realization
of Zl,A is found. Furthermore, the maximum x := max{x1, . . . , xn} is a random
realization of M∗lsev.
This procedure is quite simple, but it is very costly, too. In order to get one

realization of (M∗lsev, Zl,A1 , . . . , Zl,Ad) on the average lE[Nnum] random numbers
must be generated. If l is large, this can be very time-consuming.
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However, there are much faster algorithms for generating random samples.
The methods described in the following subsections make use of the immediate
distributions of Zl,A and M∗lsev.

5.1.1. Samples from Zl,A

According to Section 3.5, let Fnum be the cumulative distribution function of
either the binomial, the Poisson or the negative binomial distribution. If Nnum

is binomially, Poisson or negative binomially distributed, Zl,A is in the same
distribution family (see Example 3.2.2). Many common mathematical tools in-
clude functions for generating (pseudo-)random samples drawn from these three
distributions (e. g. Matlab, R, SPSS Statistics). Some of the basic meth-
ods which are used by these tools can be found in [Dev86, AD82a, KS88]. For
example, when generating negative binomial random samples, it can be taken
advantage of the fact that the negative binomial distribution is a gamma-Poisson
mixture distribution (see Section 3.5.4) � provided that one is able to generate
Poisson and gamma samples (with help of Ahrens and Dieter [AD82a, AD82b],
for example).

5.1.2. Samples from (Zl,A1
, . . . , Zl,Ad)

Theorem 3.3.2 provides that the variates Zl,A1 , . . . , Zl,Ad are statistically in-
dependent if Nnum is Poisson distributed. In this case, just realize the Zl,Ak
separately by dint of the methods cited above in Section 5.1.1. If, for all
k ∈ N≤d, zk is the drawn realization of Zl,Ak , then (z1, . . . , zd) is a realiza-
tion of (Zl,A1 , . . . , Zl,Ad).
If Nnum is negative binomially distributed, Nnum ∼ NBin(%, µ), �rst, take a

gamma distributed random variableW ,W ∼ Γ
(
%, µ

%

)
, and generate a realization

ω from it (with help of Ahrens and Dieter [AD82b], for example). The gamma-
Poisson mixture property of the negative binomial distribution (see Section 3.5.4)
ensures that the variates Zl,Ak given W = ω are Poisson distributed,

Zl,Ak |W =ω ∼ Poi(µlpAk ) ∀k ∈ N≤d.

From here on, the situation is exactly the same as in case of a Poisson distributed
Nnum, which is described above.
Finally, let Nnum be binomially distributed, Nnum ∼ Bin(r, q). Divide the unit

interval [0, 1) up into d+ 1 subintervals,

[0, 1) =

d+1⋃
k=1

[δk−1, δk)
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with δ0 := 0, δd+1 := 1 and δk := q
∑k
i=1 pAi for all k ∈ N≤d. Generate rl

realizations y1, . . . , yrl of a uniform distribution on [0, 1). If zk means the number
of realizations which lay within the interval [δk−1, δk),

zk :=

rl∑
n=1

1[δk−1,δk)(yn) ∀k ∈ N≤d,

then (z1, . . . , zd) is a realization of (Zl,A1 , . . . , Zl,Ad).

5.1.3. Samples from M∗lsev

The inverse transform sampling [Fis96, p. 149] is a basic technique for gen-
erating (pseudo-) random numbers drawn from a distribution with known cu-
mulative distribution function F . The method is based upon the property that
F−1(U) is distributed according to F if U is a uniformly distributed random
variable on (0, 1) with cumulative distribution function x1(0,1)(x) and F−1 is
the quantile function of F ,

F−1 : (0, 1)→ R : x 7−→ inf {t ∈ R |F (t) ≥ x} .

The cumulative probability function of the maximum SOLE during l kilome-
ters (l ∈ N) is needed to specify the quantile function of M∗lsev,

F−1

M∗lsev
: (0, 1)→ R : x 7−→ inf

{
t ∈ R

∣∣∣P(M∗lsev ≤ t) ≥ x} .
The selfsame function is given in Proposition 3.4.2,

P
(
M∗lsev ≤ t

)
= Gnum(Fsev(t))l 1R≥0

(t) ∀t ∈ R.

Since Gnum denotes a probability-generating function, it is strictly increasing
and continuous on [0, 1]. Thus, it is possible to de�ne the inverse function of
Gnum,

G−1
num : [Gnum(0) , 1]→ [0, 1] : Gnum(t) 7−→ t.

Furthermore, F−1
sev shall be the quantile function of Fsev,

F−1
sev : (0, 1)→ S : x 7−→ inf{t ∈ R |Fsev(t) ≥ x}.

This gives the quantile function of M∗lsev,

F−1

M∗lsev
(x) =

{
0, if x ∈

(
0, Gnum(0)l

]
,

F−1
sev

(
G−1
num

(
l
√
x
))
, if x ∈

(
Gnum(0)l , 1

)
.
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According to Section 3.6, Fsev is the cumulative distribution function of a
shifted generalized Pareto distribution with threshold usev. Thus, the quantile
function F−1

sev simply is the inverse function of Fsev,

F−1
sev (x) =

{
usev + β

ξ

(
(1− x)−ξ − 1

)
, if ξ 6= 0,

usev − β log(1− x) , if ξ = 0,
∀x ∈ (0, 1).

The probability-generating functions of the binomial, Poisson and negative bi-
nomial distributions are listed in De�nition 2.4.2. The inverse functions are:

� Nnum ∼ Bin(r, q) ⇒ G−1
num(x) = 1 +

r√x−1
q

∀x ∈
[
(1− q)r, 1

]
,

� Nnum ∼ Poi(λ) ⇒ G−1
num(x) = 1 + log(x)

λ
∀x ∈

[
e−λ, 1

]
,

� Nnum ∼ NBin(%, µ) ⇒ G−1
num(x) = 1+ %

µ

(
1− %

√
1
x

)
∀x ∈

[(
%

%+µ

)%
, 1
]
.

Together, in case of Nnum ∼ Bin(r, q), the quantile function of M∗lsev is

F−1

M∗lsev
(x) = 1((1−q)rl,1)(x)·

usev + β
ξ

((
q

1− rl√x

)ξ
− 1

)
, if ξ 6= 0,

usev + β log
(

q

1− rl√x

)
, if ξ = 0,

∀x ∈ (0, 1),

in case of Nnum ∼ Poi(λ), it is

F−1

M∗lsev
(x) = 1(e−λl,1)(x) ·

usev + β
ξ

((
− λl

log(x)

)ξ
− 1

)
, if ξ 6= 0,

usev + β log
(
− λl

log(x)

)
, if ξ = 0,

∀x ∈ (0, 1),

and �nally, if Nnum ∼ NBin(%, µ), the quantile function is

F−1

M∗lsev
(x) = 1((%/%+µ)%l,1)(x) ·


usev + β

ξ

((
%
µ

(
%l

√
1
x
− 1
))−ξ

− 1

)
, if ξ 6= 0,

usev + β log
(
µ
%

)
− β log

(
%l

√
1
x
− 1
)
, if ξ = 0

for all x ∈ (0, 1).
Due to the inverse transform sampling method, take realizations y1, . . . , yn

of a uniform distribution on (0, 1) (n ∈ N), and F−1

M∗lsev
(y1), . . . , F−1

M∗lsev
(yn) is a

random sample of size n drawn from M∗lsev.
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5.1.4. Samples from (M∗lsev, Zl,A1
, . . . , Zl,Ad)

Without loss of generality, suppose it is P
(
Ssev ∈

⋃d
k=1 Ak

)
= 1. Otherwise,

de�ne Ad+1 := S \
⋃d
k=1 Ak, generate samples from

(
M∗lsev, Zl,A1 , . . . , Zl,Ad+1

)
,

and forget the realizations of Zl,Ad+1.
Also without loss of generality, suppose that A1, . . . , Ad are intervals,

A1 = (t0, t1], . . . , Ad = (td−1, td),

with interval limits 0 < usev = t0 < t1 < . . . < td−1 < td = ∞. Otherwise, use
the fact that every Borel set is almost surely equal to a union of intervals,

Ak = (tk0, tk1] ∪ . . . ∪ (tk,ck−1, tkck ] P - a. s.

with usev ≤ tk0 < tk1 < . . . tk,ck−1 < tkck ≤ ∞ (ck ∈ N for all k ∈ N≤d). De�ne

Bkik := (tk,i−1, tki] ∀ik ∈ N≤ck , ∀k ∈ N≤d,

generate samples from
(
M∗lsev, Zl,B11 , . . . , Zl,B1c1

, . . . , Zl,Bd1 , . . . , Zl,Bdcd

)
, and

because of

Zl,Ak =

ck∑
i=1

Zl,Bki P - a. s.,

the sought-after realization is found.
With that, it manages to generate a sample from (M∗lsev, Zl,A1 , . . . , Zl,Ad) in

two steps. First, generate a realization (z1, . . . , zd) of (Zl,A1 , . . . , Zl,Ad) as de-
scribed in Section 5.1.2. In order to prepare for the second step, de�ne

EZ :=
{
Zl,A1 = z1, . . . , Zl,Ad = zd

}
and k0 := max

{
k ∈ N≤d

∣∣ zk > 0
}
.

Secondly, if (a, b] denotes the largest nonempty class and z is the generated
number of SOLEs within this class, (a, b] := (tk0−1, tk0 ] and z := zk0 , the proof
of Theorem 3.4.4 accompanies the equation

P
(
M∗lsev ≤ t

∣∣∣EZ) =

(
p(a,t]
p(a,b]

)z
=

(
Fsev(t)− Fsev(a)

Fsev(b)− Fsev(a)

)z
.

Hence, the quantile function of M∗lsev given EZ ,

F−1

M∗lsev|EZ
: (0, 1)→ (a, b] : x 7−→ inf

{
t ∈ R

∣∣∣P(M∗lsev ≤ t ∣∣EZ) ≥ x} ,
is in general speci�ed through

F−1

M∗lsev|EZ
(x) = F−1

sev

(
Fsev(a) + z

√
x
(
Fsev(b)− Fsev(a)

))
.
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With the generalized Pareto approach for Fsev one gets

F−1

M∗lsev|EZ
(x) =


usev − β

ξ
+

β
ξ

+a−usev(
1− z√x+ z√x

(
β+ξ(a−usev)
β+ξ(b−usev)

) 1
ξ

)ξ , if ξ 6= 0,

a− β log
(

1− z
√
x+ z
√
x e
− 1
β

(b−a)
)
, if ξ = 0,

∀x ∈ (0, 1).

At last, take a realization y of a uniform distribution on (0, 1), and, according
to the inverse transform sampling method described in Section 5.1.3, the vec-

tor
(
F−1

M∗lsev|EZ
(y), z1, . . . , zd

)
is a realization drawn from the random vector

(M∗lsev, Zl,A1 , . . . , Zl,Ad).

5.2. Accuracy and Power of Index-of-Dispersion

Hypothesis Test

In Section 3.5.3 a hypothesis test is developed to check whether the index of
dispersion of the number of SOLEs per kilometer, D[Nnum], di�ers from 1 sig-
ni�cantly. In this connection, the mileage covered by a vehicle is treated as a
random variable called L. If the data consists of m observations (m ∈ N), the
underlying mileages l1, . . . , lm are realizations of the statistically independent
variates L1, . . . , Lm which are all distributed according to L. The observed to-
tal number of SOLEs n1, . . . , nm are realizations of the statistically independent
variates NL1, . . . , NLm de�ned by

NLj :=

Lj∑
i=1

Nij ∀j ∈ N≤m,

where the Nij are statistically independent random variables distributed accord-
ing to the number of SOLEs per kilometer Nnum. Theorem 3.5.2 and Corollary
3.5.3 provide that the term

√
m
2

(
D̂2 − 1

)
is approximately standard normally

distributed if Nnum is Poisson distributed, where D̂2 denotes the estimator of
D[Nnum] de�ned in Equation (3.6) on page 40,

D̂2 = D̂2

(
(NLj , Lj)1≤j≤m

)
=

∑m
j=1

NLj
2

Lj
− (

∑m
j=1 NLj)

2∑m
j=1 Lj∑m

j=1

NLj
Lj

.

Based on this, the hypothesis test in Section 3.5.3 suggests to reject the hy-
pothesis that D[Nnum] is equal to 1 if and only if

√
m
2

(
D̂2 − 1

)
is outside the

interval
[
−q1−α/2, q1−α/2

]
, where q1−α/2 denotes the

(
1− α

2

)
100 % quantile of

the standard normal distribution (α ∈ (0, 1)).
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UsingMatlab [MAT12], computer simulations were run to consider the power
of the mentioned hypothesis test and the actual distribution of

√
m
2

(
D̂2 − 1

)
if

Nnum is Poisson distributed.

5.2.1. Accuracy

The signi�cance test is based on the assumption that
√

m
2

(
D̂2 − 1

)
is approx-

imately standard normally distributed. It is necessary to get an appraisal of
the quality of this approximation. For this purpose, the simulation generates
samples of sizes m = 10, 20, 50, 100, 500 and 1000. Nnum is set to be Poisson
distributed, Nnum ∼ Poi(µ), with means µ = 10−4, 10−3 and 10−2. This corre-
sponds to average waiting times of 10 000, 1000 and 100 kilometers for a SOLE.
The simulation of the mileage is implemented in two di�erent ways: �rstly, L is
(discrete) uniformly distributed on {1000, 1001, . . . , 50 999, 51 000}, secondly, L
is distributed according to 1000 + bL̃+ 1/2c, where L̃ is exponentially distributed
with mean 25 000 (corresponds to a generalized Pareto distribution with shape
ξ = 0 and scale β = 25 000). The term bxc means the largest integer not greater
than x. In both cases, L is not smaller than 1000 and the average mileage is
26 000 kilometers.
For each combination of distribution of L and values of m and µ, 106 random

samples from (NL1, L1), . . . , (NLm, Lm) were generated, and for each sample the
quantity

√
m
2

(
D̂2 − 1

)
was calculated. The k -statistics k̂1, . . . , k̂4, the unbiased

and consistent estimators of the �rst four cumulants (see Equation (3.7) on page
43), were determined from the resultant values δ1, . . . , δ106 . Since the �rst cu-
mulant equates to the expectation, the second cumulant equates to the variance,
and all other cumulants vanish in case of a normal distribution [JKB94, p. 89],
k̂1(δ1, . . . , δ106), k̂3(δ1, . . . , δ106) and k̂4(δ1, . . . , δ106) are expected to be approx-
imately equal to 0, while the statistic k̂2(δ1, . . . , δ106) should be approximately
equal to 1. The actual values can be found in Table B.1 in the appendix. In
this table, the column �km� refers to the mileage L which is either uniformly
distributed (U) or, more or less, exponentially distributed (Exp).
Table B.1 shows that for all settings the mean of

√
m
2

(
D̂2 − 1

)
is slightly

negative and approaches 0 if the sample size m increases. The variance is a
little too small, too. However, basically, the approximation of k̂2(δ1, . . . , δ106)
through 1 is very accurate. For sample sizes m ∈ {500, 1000}, the disparity is
only visible in the fourth digit after the decimal point. The third- and fourth-
order cumulants are positive, but they approach 0 if the sample size m increases.
Consequently, due to Cramér [Cra62, pp. 183/187], for a small amount of samples
the frequency curve of

√
m
2

(
D̂2 − 1

)
is right-tailed (or right-skewed) and more

tall and slim than the normal curve in the neighborhood of the mode. The
latter characteristic is also called leptokurtic [UC11]. The approximation of
the third- and fourth-order cumulants through 0 becomes better if the average
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number of SOLEs µ increases, whereas the �rst- and second-order cumulants are
essentially not in�uenced by µ.
Some of these characteristics become visible in Table B.2, too. This table col-

lects the deviation of some population quantiles of δ1, . . . , δ106 from the particular
quantiles of the standard normal distribution. If q1−α denotes the (1− α)100 %
quantile of the standard normal distribution, thenMatlab [MAT12] determines
for α = 0.99, 0.95, 0.9, 0.75, 0.5, 0.25, 0.1, 0.05 and 0.01 the rounded values

q0.01 ≈ −2.326, q0.25 ≈ −0.674, q0.9 ≈ 1.282,

q0.05 ≈ −1.645, q0.5 = 0, q0.95 ≈ 1.645

q0.1 ≈ −1.282, q0.75 ≈ 0.674, q0.99 ≈ 2.326.

The method for determining the population quantiles of δ1, . . . , δ106 is based
on the quantile command of Matlab [MAT12] which is denoted as Q̂5(p) by
Hyndman and Fan [HF96]. According to this, the ith smallest value δ(i) is taken
as the (i− 1

2
)10−6 quantile, and linear interpolation is used to compute quantiles

of probabilities between these values. Because the quantity α̃ := (1−α)106 is an
integer for all values of α from above, the (1 − α)100 % quantile of δ1, . . . , δ106

simply is 1
2
(δ(α̃) + δ(α̃+1)). Thus, the quantity

q∆(1− α) :=
δ(α̃) + δ(α̃+1)

2
− q1−α

speci�es the desired deviation of the (1 − α)100 % quantile of δ1, . . . , δ106 from
the (1− α)100 % quantile of the standard normal distribution.
Table B.2 in the appendix shows that the actual distribution of the term√
m
2

(
D̂2 − 1

)
is slightly right-skewed and leptokurtic if the sample size m is

small. The deviation regarding extreme quantiles becomes smaller if µ increases.
However, the quartiles are not in�uenced by the average number of SOLEs.
The level of skewness is illustrated in Figure C.1 and Figure C.2 in the ap-

pendix. Figure C.1 shows the standard normal distribution (red) next to the
frequency distribution of the simulated values δ1, . . . , δ106 based on di�erent sam-
ple sizes m = 10, 50, 1000, constant mean µ = 10−3, and uniformly distributed
mileages. On the other hand, Figure C.2 shows the standard normal distribution
(red) next to the frequency distribution of the simulated values δ1, . . . , δ106 based
on di�erent means µ = 10−4, 10−3 and 10−2, constant sample size m = 20, and
uniformly distributed mileages.

5.2.2. Power

The power of a hypothesis test is the probability of accepting the alternative
when it is in fact true [UC11]. In this special test, the null hypothesis H0 says
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that the index of dispersion D[Nnum] is equal to 1. The alternative hypothesis
`D[Nnum] 6= 1' can be partitioned into H1− and H1+,

H1− : D[Nnum] ∈ (0, 1), H0 : D[Nnum] = 1, H1+ : D[Nnum] ∈ R>1.

To evaluate the power of the test, a computer simulation generates samples
of sizes m = 10, 20, 50, 100, 500 and 1000. The index of dispersion is set to be
D[Nnum] = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3 and 5. The simulations of
Nnum and L work as follows:

� D[Nnum] > 1: Nnum ∼ NBin
(

µ
D[Nnum]−1

, µ
)
(negative binomial distribution)

with means µ = 10−4, 10−3, 10−2. L is as simulated as in Section 5.2.1:
uniformly distributed on {1000, 1001, . . . , 50 999, 51 000} and distributed
according to 1000 + bL̃ + 1/2c, where L̃ is exponentially distributed with
mean 25 000.

� D[Nnum] = 1: Nnum ∼ Poi(µ) (Poisson distribution) with means µ = 10−4,
10−3 and 10−2. L is as simulated as above.

� D[Nnum] < 1: Nnum ∼ Bin
(

r
1−D[Nnum]

, 1 − D[Nnum]
)
(binomial distribu-

tion) with trials r = 1, 10, 100. L is either uniformly distributed on
{1, 2, 3, 4, 5} or distributed according to 1 + L with L ∼ NBin(1, 2). In
both cases, L is positive with expectation value 3.

The di�erent simulation method of the mileage L in case of underdispersion
ensures that in all cases similar numbers of events are generated:

D[Nnum] ≥ 1 : E
[
N∗Lnum

]
= E[L]E[Nnum] = 26 000µ ∈ {2.6, 26, 260},

D[Nnum] < 1 : E
[
N∗Lnum

]
= E[L]E[Nnum] = 3r ∈ {3, 30, 300}.

Note that the NBin(1, 2) distribution is identical to a geometric distribution,
which is the discrete analogue of the exponential distribution.
For each combination of distribution of L and values of m, D[Nnum], µ and r,

105 random samples from (NL1, L1), . . . , (NLm, Lm) were generated, and for each
sample the quantity

√
m
2

(
D̂2 − 1

)
was calculated. It was counted how often the

null hypothesis H0 is rejected in favour of H1+ due to
√

m
2

(
D̂2 − 1

)
> q1−α/2,

how often the null hypothesis H0 is rejected in favour of H1− due to the relation√
m
2

(
D̂2 − 1

)
< −q1−α/2, and how often the null hypothesis cannot be rejected.

The signi�cance level is set to be α = 0.05, so that q1−α/2 ≈ 1.9600. Table B.3,
Table B.4 and Table B.5 in the appendix collect the results of these counts. The
column �km� refers to the mileage L which is either uniformly distributed (U),
negative binomially distributed (NBin) or, more or less, exponentially distributed
(Exp). The abbreviation �IOD� stands for index of dispersion.
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Since the signi�cance level is set to be α = 0.05, the acceptance rate of the null
hypothesis is expected to be about 95 % if D[Nnum] = 1. Table B.3 indicates that
the test holds the nominal level quite well when sample size is not to small, i. e.
m ≥ 100. The column �IOD=1� also con�rms the results of Section 5.2.1: the
distribution of

√
m
2

(
D̂2 − 1

)
is right-skewed and leptokurtic under the Poisson

hypothesis.
Expectedly, the power increases if the index of dispersion increases. For large

sample sizes, i. e. m ≥ 500, the power increases very fast and already approaches
100 % for D[Nnum] = 1.5. For medium sample sizes, i. e. m ∈ {50, 100}, the
power approaches 100 % for D[Nnum] = 3. If the sample size is smaller than
50, the power increases slowly. For m ∈ {10, 20} it even happens, although
extremely rarely, that underdispersion is suggested even though D[Nnum] = 2.5.
The power is mostly better for uniformly distributed mileages than for exponen-
tially distributed ones. This is because τiod2, the asymptotic variance of

√
mD̂2,

increases linearly with E
[

1
L

]
(see Theorem 3.5.2), and E

[
1
L

]
is smaller for the

uniformly distributed L. Here, a smaller variance means less mass in the nonre-
jection range, and, accordingly, more power. Finally, the power increases if the
mean µ increases. This also has to do with the approximate variance τiod2. The-
orem 3.5.2 and Equation (4.4) on page 84 indicate that τiod2 increases linearly
with µ−1 if Nnum is negative binomially distributed and the index of dispersion
is kept constant. The course of power described is also illustrated in Figure C.3.
Table B.5 collects the results concerning indices of dispersion less than 1, i e.

D[Nnum] = 0.25, 0.5, 0.75 and 0.9. For the �rst three settings, the sample size
m = 500 is large enough to ensure a power of minimum 99.5 %. However, for
small sample sizes the power increases only very slowly if D[Nnum] decreases. To
understand the in�uence of mileage distribution and average number of SOLEs
on the power, let us have a look at τiod2, the asymptotic variance of

√
mD̂2

from Theorem 3.5.2. If Nnum is binomially distributed, Nnum ∼ Bin(r, q), the
cumulants are given by the recurrence relation

κn+1[Nnum] = q(1− q) ∂
∂q
κn[Nnum] ∀n ∈ N.

[JKK05, p. 111]. Since the �rst cumulant is equal to the mean E[Nnum] = rq (see
Section 2.4.6 and De�nition 2.4.2), it follows

κ1[Nnum] = rq, κ2[Nnum] = rq (1− q), κ3[Nnum] = rq (1− q) (1− 2q),

κ4[Nnum] = rq (1− q) (1− 6q + 6q2),

and so

τiod
2 = E

[
1
L

] −2 + 5q − 3q2

r
+ 2(1− q)2

= E
[

1
L

] D[Nnum]− 3D[Nnum]2

r
+ 2D[Nnum]2 .
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Notice that the term
(
D[Nnum]−3D[Nnum]2

)
is positive if and only if it holds

D[Nnum] ∈
(
0, 1

3

)
. In this case, τiod2 decreases if either E

[
1
L

]
or r−1 increases.

The reverse applies for D[Nnum] ∈
(

1
3
, 1
)
. Depending on whether a decrease

of τiod2 means more or less mass in the nonrejection range, power decreases or
increases. This variable behavior is also illustrated in Figure C.3. It can also be
seen there that the sample size is the most in�uential quantity with regard to
the power.

5.3. Calculation and Accuracy of Maximum Likelihood

estimator of %

5.3.1. Calculation

Let be m ∈ N, (lj)1≤j≤m ∈ Nm and (nj)1≤j≤m ∈ N0
m satisfying

m∑
j=1

nj
2

lj
− n2

l
>

m∑
j=1

nj
lj
,

where l :=
∑m
j=1 lj and n :=

∑m
j=1 nj . Given these requirements, de�ne the

function Φ by

Φ: R>0 → R : % 7−→
m∑
j=1

nj−1∑
x=0

1

%+ x
lj

− l log
(

1 + n
%l

)
=

m∑
j=1

lj
(
ψ(%lj + nj)− ψ(%lj)

)
− l log

(
1 + n

%l

)
with digamma function ψ, ψ(x) = d

dx
log(Γ(x)), [AS65, p. 258]. Theorem 4.3.7

veri�es that the maximum likelihood estimator of the actual exponent % is the
unique root of Φ. When searching for it, an adequate initial approximation of
the root is the point

%∗ :=
n

l

∑m
j=1

nj
2

lj
− n2

l∑m
j=1

nj
lj

− 1

−1

,

because %∗ is a consistent estimator of the exponent %: n/l is the consistent
maximum likelihood estimator of the mean parameter µ (see Theorem 4.3.2 and
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Theorem 4.3.3) and the quotient of
∑m
j=1

nj
2

lj
− n2

l
and

∑m
j=1

nj
lj

is a consistent

estimator of the index of dispersion of Nnum (see Theorem 3.5.2), which means

%∗
P−−→ E[Nnum]

D[Nnum]− 1
=

µ

1 + µ
%
− 1

= % for m→∞.

The most immediate way to �nd the root of Φ is to use a simple bisection
method. First, choose a point %1 ∈ R>0 large enough such that Φ(%1) < 0.
Since the root of Φ is a maximizer, the sign of Φ changes from positive to
negative there. Thus, the actual root must lie within the interval (0, %1). Next,
check for the center point %2 := 1

2
%1 whether Φ(%2) is positive or negative. In

the �rst case, the actual root must be in (%2, %1). On the other hand, if Φ(%2) is
negative, the root lies within the interval (0, %2). Select the proper interval and,
again, check for the center point whether Φ is positive or negative there, and
so on. Repeat these iterations until a su�cient small interval is obtained. The
center point of this last interval is taken as an accurate approximation of the
actual root of Φ. The pseudocode in Algorithm 1 below describes the procedure
in detail.

Algorithm 1 Bisection method for calculating the maximum likelihood estima-
tor of %

1: %0 ← 0 . lower bound for exponent parameter
2: %1 ← %∗ . initial guess for upper bound for the exponent parameter
3: while Φ(%1) > 0 do . ensure that %1 is upper bound for the exponent parameter
4: %0 ← %1

5: %1 ← 2%1

6: end while

7: while %1 − %0 > 10−7 do . do bisection iterations up to su�cient accuracy
8: %← %0 + 1

2
(%1 − %0)

9: if Φ(%) > 0 then

10: %0 ← %
11: else if Φ(%) < 0 then

12: %1 ← %
13: else

14: %0 ← %
15: %1 ← %
16: end if

17: end while

18: return % . the approximation of the exponent parameter is %

The presented bisection method is simple, precise and reliable, but it also is
relatively slow [BF93, p. 40 et seqq.]. A faster algorithm is based on the Newton-
Raphson method [BF93, p. 56 et seqq.]. Two disadvantages of this method are:
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1. the derivative of Φ is needed, and 2. in general there is no guarantee that the
method converges. However, the derivative can be calculated easily,

dΦ
d%

(%) = −
m∑
j=1

nj−1∑
x=0

(
%+ x

lj

)−2

+
n

%
(
%+ n

l

)
=

m∑
j=1

lj
2(ψ1(%lj + nj)− ψ1(%lj)

)
+

n

%
(
%+ n

l

)
with trigamma function ψ1, ψ1(x) = d2

d2x
log(Γ(x)), [AS65, p. 260]. On the other

hand, Φ is strictly decreasing and convex between 0 and its root. Therefore, the
geometric interpretation of the Newton-Raphson method [BF93, p. 57] illustrates
that the method converges to the actual root of Φ from below as long as the
initial approximation %0 is smaller than the root. Algorithm 2 below shows the
corresponding pseudocode.

Algorithm 2 Newton-Raphson method for calculating the maximum likelihood
estimator of %

1: %0 ← %∗ . initial approximation of exponent parameter
2: while Φ(%0) < 0 do . ensure that %0 is to the left of the exponent parameter
3: %0 ← 1

2
%0

4: end while

5: %← %0 − Φ(%0)/dΦ

d%
(%0) . �rst Newton iteration

6: while |%− %0| > 10−7 do . do Newton iterations up to su�cient accuracy
7: %0 ← %
8: %← %0 − Φ(%0)/dΦ

d%
(%0)

9: end while

10: return % . the approximation of the exponent parameter is %

5.3.2. Accuracy

Section 4.3.2 suggests that the maximum likelihood estimator of % is asymptoti-
cally e�cient. Con�dence intervals (see Equation (4.5) on page 85) are speci�ed
on the basis of this assumption. In order to validate the asymptotic e�ciency,
a Monte Carlo simulation was run for sample sizes m = 10, 20, 50, 100, 500,
1000, means µ = 10−4, 10−3, 10−2 and exponents % = 10−5, 10−4, 10−3, 10−2

using Matlab [MAT12]. For each combination of m, µ and %, at �rst a sam-
ple of mileages was generated, l1, . . . , lm. These mileages are realizations of
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either a uniform distribution on {1000, 1001, . . . , 50 999, 51 000} or the variate
1000+bL̃+1/2c, where L̃ is exponentially distributed with mean 25 000. The term
bxc means the largest integer not greater than x. After that 105 samples were

generated,
(
n

(1)
j

)
1≤j≤m, . . . ,

(
n

(105)
j

)
1≤j≤m, where each n

(i)
j is a realization of a

negative binomial distribution with exponent %lj and mean µlj , NBin(%lj , µlj).
Finally, for each sample

(
n

(i)
j

)
1≤j≤m the maximum likelihood estimator ρi was

calculated, provided that the estimator exists. If the quotient µ/% is too small,
than the simulation generates samples that do not satisfy the condition in Theo-
rem 4.3.7 (cf. Section 5.2.2). In these situations, sample means, sample variances,
etc. cannot be determined, and the tables which collect the results (Table B.6,
Table B.7 and Table B.8 in the appendix) must remain empty there.
Piegorsch [Pie90] uses the reparametrization 1/%. His simulation study shows

that the maximum likelihood estimator of 1/% has a negative bias. This suggests
that %̂m is biased with positive bias. Table B.6 in the appendix con�rms this as-

sumption. The mean ρ := 10−5∑105

i=1 ρi is always larger than the true parameter
value %, provided that the mean exists. The bias slightly decreases if the mean
parameter µ increases. If % decreases, ρ is closer to % on a percentage basis.

The standard deviation
√

1
105−1

∑105

i=1(ρi − ρ)2 behaves in the same way. Apart

from the actual standard deviation of %̂m, Table B.6 lists the term 1/%
√
I%, where

I% denotes the Fisher information concerning % from Theorem 4.2.2 under the
assumption of Remark 4.2.3,

I% :=Inum(%, µ)11

=

m∑
j=1

lj
2

(
Eϑ

[(∑N
∗lj
num−1

n=0
1

%lj+n

)2
]
− log

(
1 + µ

%

)2
)
− µ

%(%+ µ)

m∑
j=1

lj .

Since %̂m is asymptotically e�cient and the information inequality holds, the
term 1/

√
I% is a lower bound for the standard deviation, and they approach each

other if the sample size m increases. The square root of the inverse Fisher
information, 1/

√
I%, is also illustrated in Figure C.10. The plot veri�es that an

increase of the term µ/% improves the feasible accuracy of estimate of %.
Table B.7 collects the k -statistics k̂1, . . . , k̂4 of the sample

(√
I%(ρi−%)

)
1≤i≤105 ,

which are unbiased and consistent estimators of the �rst four cumulants of√
I%(%̂m − %) (see Equation (3.7) on page 43). The column �km� refers to the

mileage which is drawn from either a uniform distribution (U) or a rounded ex-
ponential distribution (Exp). Due to the asymptotic e�ciency of %, the statistics
k̂1, k̂3 and k̂4 are expected to be approximately equal to 0 for large sample sizes,
whereas k̂2 is approximately equal to 1, because these values conform the cumu-
lants of a standard normal distribution [JKB94, p. 89]. All of the entries in Table
B.7 exceed the expected values. Consequently, %̂m is biased with positive bias,
right-skewed and leptokurtic [UC11, Cra62, pp. 183/187]. The approximation
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of the distribution of
√
I%(%̂m − %) through the standard normal distribution is

suitable as long as the sample size is large enough. Which sample size is su�-
cient depends on the actual parameters % and µ. In general, the approximation
is more accurate if µ is large and % is small. The accuracy of approximation
is illustrated in Figure C.4, Figure C.5 and Figure C.6, too. The plots show
samples with uniformly generated mileages.
Table B.8 shows how the discrepancies between the k -statistics from above

and the cumulants of the standard normal distribution a�ect the quantiles of
the distribution of %̂m. The term q∆(1 − α) denotes the di�erence between
the (1 − α)100 % population quantile of the distribution of %̂m and the actual
(1 − α)100 % quantile of the standard normal distribution. The calculation of
q∆(1− α) works exactly as described in Section 5.2.1.

5.4. Accuracy of Maximum Likelihood Estimator of µ

The maximum likelihood estimator of µ is just the total number of observed
SOLEs divided by the absolute mileage (see Theorem 4.3.2). Theorem 4.3.3
provides that µ̂m is e�cient, i. e. µ̂m is unbiased and the variance is equal to the
inverse Fisher information. The Monte Carlo study to investigate the accuracy
of %̂m described in Section 5.3.2 also yields an evaluation of the distribution of
µ̂m. In addition, for the same sample sizes m = 10, 20, 50, 100, 500, 1000,
means µ = 10−4, 10−3, 10−2 and mileages (l1, . . . , lm) (from either a uniform or
rounded exponential distribution), realizations of Poisson variates were drawn,
Poi(µl1), . . . ,Poi(µlm), using Matlab [MAT12].
The resultant values in Table B.9 in the appendix a�rm that µ̂m is e�cient.

The row �% = ∞� refers to the Poisson sample, the column �km� refers to the
mileage which is drawn from either a uniform distribution (U) or a rounded
exponential distribution (Exp). The term Iµ denotes the Fisher information
concerning µ from Theorem 4.2.2,

Iµ :=

Inum(µ) = 1
µ

∑m
j=1 lj , if Nnum ∼ Poi(µ),

Inum(%, µ)22 = 1

µ
(
1+µ

%

)∑m
j=1 lj , if Nnum ∼ NBin(%, µ).

Since µ̂m is e�cient, the square root of the inverse Fisher information

1√
Iµ

=
µ√∑m
j=1 lj

√
1
µ

+ 1
%

equates to the actual standard deviation of µ̂m. In contrast to the estimate
of %, an increase of both % and µ improves a decrease of the relative standard
deviation 1/µ

√
Iµ. This is also illustrated in Figure C.11. A large µ means that
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many SOLEs occur, and so the (relative) estimate of µ is more accurate. On the
other hand, the greater the exponent %, the smaller is the variance of Nnum, and
the better µ can be estimated.
Table B.10 collects the �rst four cumulants of

√
Iµ(µ̂m − µ) estimated via k -

statistics as described in Section 5.3.2. Again, the e�ciency of µ̂m is expressed
through the fact that the �rst- and second-order cumulants, which correspond
to expectation and variance, are practically equal to 0 and 1 respectively. For
small sample sizes, the third- and fourth-order cumulants are slightly positive.
If, additionally, % is very small, k̂3 and k̂4 are even larger. Thus,

√
Iµ(µ̂m−µ) is

slightly right-skewed and leptokurtic [UC11, Cra62, pp. 183/187]. However, both
k̂3 and k̂4 converge to 0 very fast if the sample size increases. The accuracy of
approximation through the standard normal distribution is illustrated in Figure
C.7, Figure C.8 and Figure C.9, too.

5.5. Calculation and Accuracy of the Maximum

Likelihood Estimator of (ξ, β) in the Counting Model

5.5.1. Calculation

Let be (zjk) 1≤j≤m
1≤k≤d

∈ N0
m×d and (sjk) 1≤j≤m

0≤k≤d
∈ (R≥0 ∪{∞})m×d+1 with m ∈ N

and d ∈ N≥3 satisfying

m∑
j=1

d−1∑
k=2

zjk > 0 and 0 = sj0 < sj1 < . . . < sj,d−1 < sjd =∞ ∀j ∈ N≤m.

De�ne the two functions Φ1 and Φ2 by

Φi : R≥0 ×R>0 → R :

(ξ,β) 7−→
m∑
j=1

d−1∑
k=1

sjk ϕi
(
ξ
β
, sjk

)
β2 + ξβsjk

 zj,k+1

1− Fj,k+1(ξ,β)

Fjk(ξ,β)

− zjk
Fj,k−1(ξ,β)

Fjk(ξ,β)
− 1


where

Fjk(ξ, β) :=


(

1 + ξ
β
sjk
)− 1

ξ
, if ξ > 0,

e
− 1
β
sjk , if ξ = 0,

ϕi(x, a) := 1{2}(i) + 1{1}(i) ·

{
1
x

(
log(1 + xa)

(
1 + 1

xa

)
− 1
)
, if xa > 0,

a
2
, if xa = 0,
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(j ∈ N≤m, k ∈ {0, . . . , d}, i ∈ {1, 2}). Given these requirements, Proposition
4.4.3, Theorem 4.4.4 and Corollary 4.4.5 provide the following procedure for
�nding the maximum likelihood estimator of (ξ, β): at �rst, calculate the unique
root of Φ2(0, ·). If β0 denotes this root, check whether Φ1(0, β0) is positive or
not. Φ1(0, β0) ≤ 0 means that (0, β0) is the maximum likelihood estimator.
Otherwise, the joint root of Φ1 and Φ2 is the maximum likelihood estimator of
(ξ, β). This root can be found by means of a bisection method. Therefore, take
a ξ1 large enough such that for the root β1 of Φ2(ξ1, ·) it holds Φ1(ξ1, β1) < 0.
Thus, the actual shape parameter ξ must lie within the interval (0, ξ1). Next,
calculate for the center point ξ2 := 1

2
ξ1 the root β2 of Φ2(ξ2, ·). If Φ1(ξ2, β2)

is positive, the actual shape parameter ξ must be in (ξ2, ξ1), and if Φ1(ξ2, β2)
is negative, the actual shape parameter ξ lies within (0, ξ2). Select the proper
interval, take the center point of this interval, and so on. Repeat these iterations
until a su�cient small interval is obtained. If ξn is the center point of this last
interval and βn is the root of Φ2(ξn, ·), then (ξn, βn) is an accurate approximation
of the actual joint root of Φ1 and Φ2. The pseudocode in Algorithm 3 below
describes this procedure in detail.
The only outstanding point is the calculation of the roots of Φ2(ξ, ·) with ξ

given. Similar to the function Φ in Section 5.3.1, also the function β 7→ Φ2(ξ, β) is
strictly decreasing and convex between 0 and its unique root. Thus, the Newton-
Raphson method [BF93, p. 56 et seqq.] is an appropriate tool for �nding the root
of Φ2(ξ, ·) as long as the initial approximation is to the left of the actual root.
A good guess for this initial approximation is the minimum of the relative class
limits s11, . . . , sm1, because the second statement of Proposition 4.4.3 ensures
that in some situations min{sj1 | 1 ≤ j ≤ m} is indeed smaller than the actual
root. Finally, the Newton-Raphson method needs the partial derivative of Φ2

with respect to the second dimension,

∂Φ2
∂β

(ξ, β) =−
m∑
j=1

d−1∑
k=1

2βsjk + ξsjk
2

(β2 + ξβsjk)2

 zj,k+1

1− Fj,k+1(ξ,β)

Fjk(ξ,β)

− zjk
Fj,k−1(ξ,β)

Fjk(ξ,β)
− 1


+

m∑
j=1

d−1∑
k=1

βsjk
(β2 + ξβsjk)2

(
zj,k+1

sj,k+1−sjk
β+ξsj,k+1

Fjk(ξ,β)

Fj,k+1(ξ,β)
+

Fj,k+1(ξ,β)

Fjk(ξ,β)
− 2︸ ︷︷ ︸

without this part if k=d−1

−
zjk

sjk−sj,k−1

β+ξsj,k−1

Fjk(ξ,β)

Fj,k−1(ξ,β)
+

Fj,k−1(ξ,β)

Fjk(ξ,β)
− 2

)
.

Algorithm 4 below repeats the Newton-Raphson method for calculating the root
of Φ2(ξ, ·).
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Algorithm 3 Bisection method for calculating the maximum likelihood estima-
tor of (ξ, β)

1: β ← root of Φ2(0, ·) . initial approximation of scale parameter; see Algorithm 4
2: if Φ1(0, β) ≤ 0 then . check initial approximation of scale parameter
3: ξ ← 0
4: else
5: ξ0 ← 0 . lower bound for shape parameter
6: ξ1 ← 1 . initial guess for upper bound for shape parameter
7: β ← root of Φ2(ξ1, ·) . see Algorithm 4
8: while Φ1(ξ1, β) > 0 do. ensure that ξ1 is an upper bound for shape parameter
9: ξ0 ← ξ1
10: ξ1 ← 2ξ1
11: β ← root of Φ2(ξ1, ·) . see Algorithm 4
12: end while

13: while ξ1 − ξ0 > 10−7 do . do bisection iterations up to su�cient accuracy
14: ξ ← ξ0 + 1

2
(ξ1 − ξ0)

15: β ← root of Φ2(ξ, ·) . see Algorithm 4
16: if Φ1(ξ, β) > 0 then

17: ξ0 ← ξ
18: else if Φ1(ξ, β) < 0 then

19: ξ1 ← ξ
20: else

21: ξ0 ← ξ
22: ξ1 ← ξ
23: end if

24: end while

25: end if

26: return ξ, β . the approximation of shape and scale is (ξ, β)

Algorithm 4 Newton-Raphson method for calculating the root of Φ2(ξ, ·)
1: β0 ← min{sj1|1 ≤ j ≤ m} . initial approximation of the root
2: while Φ2(ξ, β0) < 0 do . ensure that β0 is to the left of the root
3: β0 ← 1

2
β0

4: end while

5: β ← β0 − Φ2(ξ,β0)/
∂Φ2
∂β

(ξ,β0) . �rst Newton iteration

6: while |β − β0| > 10−7 do . do Newton iterations up to su�cient accuracy
7: β0 ← β

8: β ← β0 − Φ2(β0)/
∂Φ2
∂β

(ξ,β0)

9: end while

10: return β . the approximation of the actual root is β
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5.5.2. Accuracy in Case of ξ ∈ R>0

In order to analyze the accuracy of the maximum likelihood estimator (ξ̂m, β̂m),
a Monte Carlo simulation was run using Matlab [MAT12]. For each combi-
nation of sample sizes m = 20, 50, 100, shape parameters ξ = 0.5, 1, scale
parameters β = 1, 3, 5, average numbers of SOLEs µ = 10−4, 10−3 and num-
bers of classes d = 4, 6 with partitions (sj0, . . . , sj4) = (0, 4, 8, 12,∞) and
(sj0, . . . , sj6) = (0, 2.4, 4.8, 7.2, 9.6, 12,∞), at �rst a sample of mileages were
generated, l1, . . . , lm. These mileages are realizations of either a uniform dis-
tribution on {1000, 1001, . . . , 50 999, 51 000} or the variate 1000 + bL̃ + 1/2c,
where L̃ is exponentially distributed with mean 25 000. The term bxc means
the largest integer not greater than x. Hereafter, 105 samples were generated,(
z

(1)
jk

)
1≤j≤m
1≤k≤d

, . . . ,
(
z

(105)
jk

)
1≤j≤m
1≤k≤d

, where each z(i)
jk is a realization of a Poisson dis-

tribution with mean

µlj

((
1 + ξ

β
sj,k−1

)− 1
ξ −

(
1 + ξ

β
sjk
)− 1

ξ

)
.

Finally, for each sample
(
z

(i)
jk

)
1≤j≤m
1≤k≤d

the maximum likelihood estimator (ξ̂m, β̂m)

was calculated by means of the method described above in Section 5.5.1.
Table B.11 and Table B.12 in the appendix list sample means and sample

standard deviations of the resultant values. Both ξ̂m and β̂m slightly overesti-
mate the true parameter values. The higher µ or m, the more SOLEs can be
observed, and the more accurate the estimates are. If the sample size m is small,
it may occur that all medium classes remain empty and the maximum likelihood
estimator does not exist (see Theorem 4.4.4). Then, sample mean and sample
variance cannot be calculated. An increase of number of classes causes a decrease
of the variances of ξ̂m and β̂m, but not for all settings the bias decreases, too.
The corresponding entries of the inverse Fisher information matrix,

Jξ :=
[
Isev(µ, ξ, β)−1]

11

=

∑d−1
k=1

a21k(ξ,β)2

b1k(ξ,β)

µ
∑m
j=1 lj

(∏2
i=1

∑d−1
k=1

ai1k(ξ,β)2

b1k(ξ,β)
−
(∑d−1

k=1
a11k(ξ,β) a21k(ξ,β)

b1k(ξ,β)

)2
) ,

and

Jβ :=
[
Isev(µ, ξ, β)−1]

22

=

∑d−1
k=1

a11k(ξ,β)2

b1k(ξ,β)

µ
∑m
j=1 lj

(∏2
i=1

∑d−1
k=1

ai1k(ξ,β)2

b1k(ξ,β)
−
(∑d−1

k=1
a11k(ξ,β) a21k(ξ,β)

b1k(ξ,β)

)2
)
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(see Theorem 4.2.2, aijk, bjk as de�ned there), approximate the actual vari-
ances of ξ̂m and β̂m respectively very well. This fact justi�es the approximate
con�dence intervals in Section 4.4.3 (see Equation (4.7) on page 101).
The con�dence intervals of ξ and β in Section 4.4.3 are based on the assump-

tion that both (ξ̂m−ξ)/
√
Jξ and (β̂m−β)/

√
Jβ are asymptotically standard normally

distributed. Table B.13, Table B.14, Table B.15 and Table B.16 in the appendix
con�rm this assumption. The tables collect the �rst four cumulants of (ξ̂m−ξ)/

√
Jξ

and (β̂m−β)/
√
Jβ estimated via k -statistics as described in Section 5.3.2. Similar

to the maximum likelihood estimators of µ and % (see Section 5.4 and Section
5.3.2) both ξ̂m and β̂m are most often slightly right-skewed and leptokurtic,
since the third- and fourth-order cumulants are positive. Only for β = 1 and
(sj0, . . . sj4) = (0, 4, 8, 12,∞) the fourth-order cumulant of (β̂m−β)/

√
Jβ is nega-

tive if the sample size m is small. The standard normal distribution, which has a
�rst-, third- and fourth-order cumulant of value 0 and a second-order cumulant
of value 1 [JKB94, p. 89], approximates the terms (ξ̂m−ξ)/

√
Jξ and (β̂m−β)/

√
Jβ

very well if either µ or m is not too small. This is also illustrated by Figure C.12,
Figure C.13, Figure C.14 and Figure C.15 (concerning ξ) as well as in Figure
C.16, Figure C.17, Figure C.18 and Figure C.19 (concerning β).

5.5.3. Accuracy in Case of ξ = 0

The Monte Carlo simulation described in Section 5.5.2 was also run for ξ = 0.
In order to analyze the heuristic con�dence intervals from Section 4.4.3 (see
Equation (4.9) on page 103), this time the simulation was run for sample sizes
m = 20, 50, 100, 500, 1000 and µ = 10−4, 10−3, 10−2. Table B.17 in the
appendix collects the results concerning ξ̂m. Besides the sample mean and sample
standard deviation of the 105 resultant values, the table lists the number of
realizations of ξ̂m which are equal to 0. By considerations of Section 4.4.3, the
probability of the event {ξ̂m = 0} is expected to be 50 %. For large β and, of
course, for large µ and m, this assessment is true. Since β represents the average
severity of an arbitrary SOLE (see De�nition 2.4.2), a small β means that only
the lower classes get �lled. But for an observation z ∈ N0

d with
∑d
k=3 zk = 0 it

always holds ξ̂m(z) = 0 or the maximum likelihood estimator does not exist (see
Section 4.4.4). If, in addition, the classes are too big or only less SOLEs can be
observed, the frequency of realizations with ξ̂m = 0 can greatly exceed 50 %.
Because the shape is bounded below by 0, ξ̂m must overestimate the true

parameter value ξ = 0. The discussion in Section 4.4.3 leads up to expect that
for less observations β̂m is biased, too, and the bias is negative. Table B.18
veri�es this fact.
Section 4.4.3 provides approximate con�dence intervals of ξ (= 0) and β based

on the functions Φξ and Φβ (see Equation (4.8) on page 103). Φξ is taken as an
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approximation of the cumulative distribution function of ξ̂m, and Φβ estimates
the cumulative distribution function of β̂m focused on the extreme quantiles.
According to this, Φ−1

ξ (p) is an approximation of the 100p% quantile of ξ̂m
(p ∈ [0.5, 1)) and Φ−1

ξ (p) is an approximation of the 100p% quantile of β̂m
(p ∈ (0, 1)) when Φ−1

ξ and Φ−1
β denote the inverse of Φξ : R≥0 → R≥1/2 and Φβ

respectively. To show the accuracy of this approximation, the values of Φ−1
ξ (p)

and Φ−1
β (p) can be compared to the sample quantiles of the 105 realizations of

ξ̂m and β̂m. The calculation of these sample quantiles works as described in
Section 5.2.1.
Table B.19 and Table B.20 collect this comparison with regard to ξ̂m. The

columns �p-Q� contain the 100p% sample quantiles of the 105 realizations of
ξ̂m. For the sake of clarity, the table only lists the results with uniformly drawn
mileages. The samples with exponentially distributed mileages has very similar
quantiles. The table shows that Φ−1

ξ approximates the quantiles of ξ̂m very well.

For β = 1 the extreme quantiles of ξ̂m, i. e. p ≥ 0.9, are slightly overestimated if
only less observations are available. On the other hand, Φ−1

ξ (p) is sometimes a
little bit to small if β ∈ {3, 5}.
Table B.21, Table B.22, Table B.23 and Table B.24 in the appendix show the

comparison of the quantiles with regard to β̂m. Also here, the actual quantiles
of β̂m and the values Φ−1

β (p) are quite compatible with each other, especially
for the extreme quantiles, i. e. p ≤ 0.1 and p ≥ 0.9. Generally, Φ−1

β slightly

underestimates the true quantiles of β̂m.
As an example, the distribution of ξ̂m and β̂m from the Monte-Carlo simulation

is plotted in case of (sj0, . . . , sjd) = (0, 2.4, 4.8, 7.2, 9.6, 12,∞), ξ = 0, β = 1,
µ = 10−2 and m = 100. Figure C.20 in the appendix shows the frequency
distribution and the empirical distribution function of ξ̂m. The plots verify
that Φξ approximates the distribution of ξ very well. Figure C.21 shows the
same plot with regard to β̂m. Remember that the approximation Φβ is put
together of Φβ− and Φβ+ (see Section 4.4.3): Φβ− and Φβ+ are assumed to be
the approximate cumulative distribution functions of β̂m given ξ̂m = 0 and of
β̂m given ξ̂m > 0, respectively, so that Φβ = (Φβ−+Φβ+)/2 is an approximation
of the cumulative distribution function of β̂m. Figure C.22 veri�es that Φβ− is
an adequate approximation. Figure C.23 shows that at least the lower quantiles
of β̂m|ξ̂m=0 are well approximated by Φβ+. Together, as can be seen in Figure
C.21, Φβ is practical for the calculation of con�dence intervals of β̂m as described
in Section 4.4.3.
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5.5.4. Optimal Class Limits

Section 4.4.4 deals with equidistant class limits and provides the existence of an
optimal class length. If there is a Λ ∈ R>0 such that sjk = tjk−usev = kΛ for all
j ∈ N≤m and k ∈ {0, . . . , d−1}, the optimal class length Λopt is due to De�nition
4.4.8 the unique maximizer of the determinant of the Fisher information matrix
concerning ξ and β as function with respect to Λ,

det
(
Isev(µ, ξ, β)

)
=

(
µ

m∑
j=1

lj

)2
 2∏
i=1

d−1∑
k=1

ai1k(ξ, β)2

b1k(ξ, β)
−

(
d−1∑
k=1

a11k(ξ, β) a21k(ξ, β)

b1k(ξ, β)

)2


(see Theorem 4.2.2; for ξ and β constant, aijk(ξ, β) and bjk(ξ, β) are functions
with respect to the relative class limits s11, . . . , s1,d−1). The actual value of
Λopt only depends on the parameter values ξ and β. The terms bjk(ξ,β)/β4,
a1jk(ξ,β)/β2 and a2jk(ξ,β)/β do not really depend on β and Λ but on the quotient
Λ/β. Therefore, if Λ is replaced by βΛ, then

Λ→ βΛ

 
bjk(ξ, β)

β4
→ bjk(ξ, 1),

a1jk(ξ, β)

β2
→ a1jk(ξ, 1),

a2jk(ξ, β)

β
→ a2jk(ξ, 1)

 det
(
Isev(µ, ξ, β)

)
β2 → det

(
Isev(µ, ξ, 1)

)
. (5.1)

Consequently, Λopt is the optimal class length for shape ξ and scale 1 if and only
if βΛopt is the optimal class length for shape ξ and scale β, i. e. the optimal class
length is in linear proportion to the scale parameter β. For this reason, it is
su�cient to calculate Λopt in case of β = 1.
A Newton-Raphson method [BF93, p. 56 et seqq.] was implemented inMatlab

[MAT12] to calculate Λopt for di�erent numbers of classes d = 3, 4, 5, 6, 7, 8
and shape parameters ξ = 0, 0.1, 0.2, 0.3, 0.4, 0.5. Table B.30 in the appendix
lists the resultant values. As expected, Λopt increases if either ξ increases or d
decreases. The larger ξ, the more extreme SOLEs may occur. Hence, the class
length must increase to o�er as much of these extreme SOLEs as possible. On
the other hand, if d decreases, the class length must increase to o�er the same
range as before.
Besides the optimal class length Λopt, Table B.30 lists the quantiles of the

resultant (medium) relative class limits,

F−1
GPar(ξ,β)

(
Λopt

)
, F−1

GPar(ξ,β)

(
2Λopt

)
, . . . , F−1

GPar(ξ,β)

(
(d− 1)Λopt

)
,

where F−1
GPar(ξ,β) denotes the inverse of the cumulative distribution function of the

generalized Pareto distribution with shape ξ and scale β (see De�nition 2.4.2). It
is striking that all the quantiles F−1

GPar(ξ,β)

(
kΛopt

)
decrease if ξ increases, except



5.5. Calculation and Accuracy of MLE of (ξ, β) in EC 139

for k = 1 if d ∈ {7, 8}.

The demand for equidistant class limits is a strict constraint. Without this
constraint, it may be possible to �nd a con�guration of class limits which yields
a larger value for det(Isev(µ, ξ, β)) than any con�guration of equidistant class
limits. The terms aijk(ξ, β) as functions with respect to the class limits are
for all j ∈ N≤m the same. Also the terms bjk(ξ, β) as functions with respect
to the class limits do not di�er from each other for distinct j. Thus, without
loss of generality, let be m = 1. Since the parameter µ and the mileage l1 do
not in�uence the maximizer of det(Isev(µ, ξ, β)), without loss of generality let
be µ = 1 and l1 = 1, too. Eventually, for the same reason than above, it is
su�cient to �nd a set of relative class limits s = (s11, . . . , s1,d−1) ∈ R>0

d−1 with
0 < s11 < . . . < s1,d−1 <∞ maximizing the determinant

det
(
Isev(1, ξ, 1)

)
=

2∏
i=1

d−1∑
k=1

ai1k(ξ, 1)2

b1k(ξ, 1)
−

(
d−1∑
k=1

a11k(ξ, 1) a21k(ξ, 1)

b1k(ξ, 1)

)2

,

because then the set βs = (βs11, . . . , βs1,d−1) is a maximizer of det(Isev(µ, ξ, β)).

Figure 5.1.: Determinant of Fisher information concerning ξ and β for every tenth of 2 · 106

randomly generated class limit con�gurations.
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Figure 5.2.: Determinant of Fisher information concerning ξ and β for top 104 of 2 · 106

randomly generated class limit con�gurations.

For numbers of classes d = 3, 4, 5, 6, 7, 8 and shapes ξ = 0, 0.1, 0.2, 0.3,
0.4, 0.5 Monte Carlo simulations were run using Matlab [MAT12]. For each
combination of d and ξ, (d− 1) independent realizations u1, . . . , ud−1 of U were
generated, where U is uniformly distributed on

(
0, F−1

GPar(ξ,1)(0.9999)
)
. Finally,

the determinant det(Isev(1, ξ, 1)) was calculated based on the relative class limits
(s11, . . . , s1,d−1) = (u(1), . . . , u(d−1)), where u(i) denotes the ith smallest value
in {u1, . . . , ud−1}. This procedure was repeated 2 · 106 times.
The two million con�gurations of relative class limits and the corresponding

values of the determinant det(Isev(1, ξ, 1)) can be plotted in the following way:
suppose, (s̃11, . . . , s̃1,d−1) is one of the two million class limit con�gurations, then
all the values s̃1k are plotted in a scatter plot against the value det(Isev(1, ξ, 1)).
As an example, the resultant scatter plot in case of ξ = 0.1 and d = 5 is illustrated
in Figure 5.1 and Figure 5.2. For the sake of clarity, in Figure 5.1 only every
tenth of the two million con�gurations is plotted, and in Figure 5.2 the top ten
thousand con�gurations are plotted. For all the other combinations of ξ and d,
the corresponding scatter plots look very similar to that.
The plots show that the best class limit con�gurations seem to tend to one op-

timal con�guration. Besides the Monte Carlo class limits, Figure 5.1 shows the
optimal equidistant relative class limits as calculated above (marked by crosses),
and it shows a con�guration which may be the optimal one (marked by circles).
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This last con�guration was found by a sequential quadratic programming algo-
rithm pre-implemented in Matlab [MAT12] (command fmincon with sqp algo-
rithm which works as described in Chapter 18 of Nocedal and Wright [NW06]).
The algorithm �nds the minimum of a constrained nonlinear multivariable func-
tion. Applied to the function − det(Isev(1, ξ, 1)), for all combinations of d and ξ
adequate approximations of the actual optimal class limit con�gurations could
be calculated. Table B.29 in the appendix lists the results of this analysis.
The optimal class limits compose very small lower classes, and the upper

classes are growing ever larger. This ensures that not all SOLEs will lie within
the lower classes. The high quantiles of the generalized Pareto distribution on the
basis are well covered. At least the half of the relative class limits s11, . . . , s1,d−1,
namely s1,d d

2
e, . . . , s1,d−1, are larger than the 88 % quantile. The optimal class

limit con�guration is a good compromise: the lower classes are small enough
such that not all SOLEs lie within them, and the upper classes are correctly
dimensioned such that the probability of an empty class is relatively small and,
simultaneously, the high quantiles are well covered.

Changing the class limits during the experiment or adjusting arbitrary class
limits instead of equidistant ones can involve considerable technical e�ort. One
may ask if this e�ort will pay o�. The observation period which is necessary to
get as small con�dence intervals as desired can be used as an criterion to decide
whether it is worth the e�ort or not.
Suppose, the observations of all vehicles are based on the same relative class

limit con�guration s = (0, s11, . . . , s1,d−1,∞) ∈ {0} ×R>0
d−1 × {∞}. The total

mileage
∑m
j=1 lj of the vehicles shall be denoted by l. On the other hand, there

is a second relative class limit con�guration s̃ = (0, s̃11, . . . , s̃1,d−1,∞) ∈ {0} ×
R>0

d−1×{∞}, e. g. the optimal one. The question is how long the vehicles must
be observed such that the (approximate) con�dence intervals of ξ and β have the
same size as in case of the con�guration s. The size of the con�dence intervals
from Section 4.4.3 (see Equation (4.7) on page 101) is in linear proportion to
the terms

√
Jξ and

√
Jβ respectively from above (denoted by σξ,m and σβ,m

respectively in Section 4.4.3). Thus, if the class limit con�guration is changed,
a new mileage l̃ must be chosen such that the term Jξ remained constant. In

Table 5.1.: Ratio between the mileage lopt in case of optimal class limits and the mileage leopt
in case of optimal equidistant class limits such that the con�dence interval of ξ is equal in both
cases.

d lopt with regard to ξ

ξ = 0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5

3 0.50 leopt 0.44 leopt 0.40 leopt 0.37 leopt 0.34 leopt 0.32 leopt
4 0.69 leopt 0.62 leopt 0.56 leopt 0.51 leopt 0.47 leopt 0.44 leopt
5 0.80 leopt 0.72 leopt 0.66 leopt 0.60 leopt 0.56 leopt 0.52 leopt
6 0.84 leopt 0.77 leopt 0.70 leopt 0.65 leopt 0.61 leopt 0.57 leopt
7 0.87 leopt 0.81 leopt 0.75 leopt 0.70 leopt 0.65 leopt 0.61 leopt
8 0.89 leopt 0.83 leopt 0.78 leopt 0.73 leopt 0.68 leopt 0.64 leopt
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Table 5.2.: Ratio between the mileage lopt in case of optimal class limits and the mileage leopt
in case of optimal equidistant class limits such that the con�dence interval of β is equal in both
cases.

d lopt with regard to β

ξ = 0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5

3 0.50 leopt 0.46 leopt 0.43 leopt 0.41 leopt 0.39 leopt 0.38 leopt
4 0.73 leopt 0.68 leopt 0.63 leopt 0.60 leopt 0.58 leopt 0.56 leopt
5 0.77 leopt 0.71 leopt 0.67 leopt 0.64 leopt 0.61 leopt 0.59 leopt
6 0.83 leopt 0.78 leopt 0.73 leopt 0.70 leopt 0.68 leopt 0.65 leopt
7 0.86 leopt 0.81 leopt 0.77 leopt 0.73 leopt 0.71 leopt 0.68 leopt
8 0.88 leopt 0.83 leopt 0.79 leopt 0.76 leopt 0.74 leopt 0.71 leopt

other words:

1 =

Jξ

∣∣∣
class limits s̃
tot.mileage l̃

Jξ

∣∣∣
class limits s
tot.mileage l

⇔ l̃

l
=

∑d−1
k=1

a21k(ξ,β)2

b1k(ξ,β)(∏2
i=1

∑d−1
k=1

ai1k(ξ,β)2

b1k(ξ,β)
−
(∑d−1

k=1

a11k(ξ,β) a21k(ξ,β)

b1k(ξ,β)

)2
)
∣∣∣∣∣
class limits s̃∑d−1

k=1

a21k(ξ,β)2

b1k(ξ,β)(∏2
i=1

∑d−1
k=1

ai1k(ξ,β)2

b1k(ξ,β)
−
(∑d−1

k=1

a11k(ξ,β) a21k(ξ,β)

b1k(ξ,β)

)2
)
∣∣∣∣∣
class limits s

.

Analogously, a su�cient mileage for Jβ can be found.
As an example, suppose that s is the optimal con�guration for equidistant

class limits, and the covered distance is l = leopt. If s̃ is chosen to be the
absolute optimal class limit con�guration, the su�cient mileage l̃ = lopt for
equal-sized con�dence intervals is partly considerable smaller than leopt. Table
5.1 lists the ratios between lopt and leopt for con�dence intervals of the shape
parameter ξ. Since the optimal relative class limits are in linear proportion to
the scale parameter β, these results hold for all values of β. For ξ = 0, lopt is
calculated as in case of a positive shape using the con�dence interval Cξ (see
Equation (4.7) on page 101). The table shows that it is possible to save up to
68 % of observation time if the optimal class limit con�guration is used instead
of the optimal equidistant one. The more classes are chosen, the less time can
be saved, because in case of many classes the equidistant class limits cover the
observation range quite well. Table 5.2 collects the particular mileages for the
con�dence intervals of β, and it shows similar ratios.

5.5.5. Comparison with Uncensored Generalized Pareto Model

Even if the optimal class limit con�guration from Section 5.5.4 is used, the group-
ing of the SOLEs is accompanied by a loss of information. In order to quantify
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this loss of information, let us compare the inverse Fisher information terms Jξ
and Jβ from Section 5.5.2, which corresponds to the approximate variances of
the maximum likelihood estimators ξ̂m and β̂m, with the inverse Fisher infor-
mation of an uncensored generalized Pareto distribution. According to Smith
[Smi84], the Fisher information of a generalized Pareto experiment is

IGPar(ξ, β) =

(
2

(1+ξ)(1+2ξ)
− 1
β(1+ξ)(1+2ξ)

− 1
β(1+ξ)(1+2ξ)

1
β2(1+2ξ)

)
.

Consequently, the inverse Fisher information is

IGPar(ξ, β)−1 =

(
(1 + ξ)2 β(1 + ξ)
β(1 + ξ) 2β2(1 + ξ)

)
.

Compare the left upper entry of IGPar(ξ, β)−1 with Jξ where also only one SOLE
is observed, i. e. µ

∑m
j=1 lj = 1, by determining the quotient

Hξ :=

Jξ

∣∣∣
µ
∑m
j=1 lj=1

(1 + ξ)2
.

The same can be done with the lower right entry of IGPar(ξ, β)−1 and Jβ ,

Hβ :=

Jβ

∣∣∣
µ
∑m
j=1 lj=1

2β2(1 + ξ)
.

Figure 5.3 shows this quotients Hξ and Hβ where Jξ and Jβ are calculated
based on the optimal class limit con�gurations from Section 5.5.4. Since the

Figure 5.3.: Quotients Hξ and Hβ of censored and uncensored inverse Fisher information based on the
optimal class limit con�guration.
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Figure 5.4.: Quotients Hξ and Hβ of censored and uncensored inverse Fisher information based on the
optimal equidistant class limit con�guration.

optimal class limits are in linear proportion to β and the relations (5.1) on page
138 hold, both Hξ and Hβ are constant as function with respect to β as long as
the respective optimal class limit con�gurations are used. The plots show that
both Hξ and Hβ approaches 1 if the number of classes decreases. The larger ξ,
the closer are Hξ and Hβ to 1.
Figure 5.4 shows the same plots, but this time Jξ and Jβ are calculated based

on the optimal equidistant class limit con�gurations from Section 5.5.4. Again,
the values of Hξ and Hβ do not depend on β then. It can be seen that Hξ and
Hβ are much larger in the equidistant case. However, they approach 1 for large
numbers of classes. This time, both Hξ and Hβ are closer to 1 if ξ is small.

5.6. Calculation and Accuracy of the Maximum

Likelihood Estimator of (ξ, β) in the

Counting-Maximum Model

5.6.1. Calculation

The calculation of ξ̂m and β̂m in the counting-maximummodel works very similar
to the calculation in the counting model (see Section 5.5.1). In the functions Φi,
the counts (zjk) 1≤j≤m

1≤k≤d
and the relative class limits (sjk) 1≤j≤m

0≤k≤d
must be replaced

by the transformed counts (zjk) 1≤j≤m
1≤k≤d+1

and the transformed relative class limits

(sjk) 1≤j≤m
0≤k≤kj+1

, respectively, as described in Section 4.5. In addition, the particu-

lar derivatives with respect to ξ and β of the term −
∑m
j=1 log(β + ξ(xj − usev))
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must be added, where (xj)1≤j≤m are the observed maximum SOLEs per vehicle.
In other words:

Φi(ξ, β)
∣∣∣
(zjk),(sjk)

−−→ Φi(ξ, β)
∣∣∣
(zjk),(sjk)

−
m∑
j=1

(xj − usev)1{1}(i) + 1{2}(i)

β + ξ(xj − usev)
,

∂Φ2
∂β

(ξ, β)
∣∣∣
(zjk),(sjk)

−−→ ∂Φ2
∂β

(ξ, β)
∣∣∣
(zjk),(sjk)

+

m∑
j=1

1

(β + ξ(xj − usev))2 .

Lemma 4.5.1 ensures that with these transformations the calculation of the max-
imum likelihood estimators works as described in Section 5.5.1.

5.6.2. Accuracy

Section 5.5.2 describes a Monte Carlo simulation whose purpose is to determine
the accuracy of ξ̂m and β̂m in the counting model. The same simulation was
also run for the counting-maximum model. The mileages were taken over from
the counting model study and the maxima were drawn as described in Section
5.1.4. Since the calculation of ξ̂m and β̂m is much more time-consuming than in
the counting model, only 104 realizations of the maximum likelihood estimators
were generated. The sample means and sample standard deviations of these 104

values are listed in Table B.25, Table B.26 and Table B.27 and Table B.28 in
the appendix.
Table B.25 shows that the standard deviation of ξ̂m is for the setting with four

classes by a factor of between 1.2 and 2.5 smaller than in the counting model (cf.
Section 5.5.2 and Section 5.5.3). For the setting with six classes (see Table B.26),
this factor can still be up to 2. The larger β, the greater is this factor, at least
for the applied class limit con�gurations. In case of ξ = 0, the smaller standard
deviation causes a smaller bias than in the counting model. For ξ ∈ {0.5, 1}, the
bias is similar to that in the counting model, but this time the bias is negative.
Thus, ξ̂m slightly underestimates the true shape if only less observations are
available. In contrast, in the counting model ξ̂m overestimates the true shape.
The standard deviation of β̂m is smaller than in the counting model, too. In

case of ξ = 0, this also results in a smaller bias. For ξ ∈ {0.5, 1} the bias of β̂m
is greater than in the counting model. However, the mean squared error of β̂m
(variance of β̂m plus the bias of β̂m squared [UC11]) is signi�cantly smaller than
in the counting model.
To conclude, the estimate of ξ and β through ξ̂m and β̂m respectively is sig-

ni�cant better if the absolute maximum SOLE is part of the observation. A
second advantage is that the maximum likelihood estimators always exist in the
counting-maximum model.
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5.7. Results of Measurement Study

The study of the BMW Group mentioned in Section 2.1 is the motivation for
this thesis. A part of the real data from this study shall be analyzed here by
means of the presented model. This part of data comprises m = 8913 vehicles.
All the observations are based on the same class limit con�guration: d = 8
classes, equidistant class limits with class length Λ ∈ R>0 and severity threshold
usev ∈ R>0, so that the class limits are(

tj0, tj1, . . . , tj7, tj8
)

=
(
usev, usev + Λ, . . . , usev + 7Λ, ∞

)
∀j ∈ N≤8913.

As usual, for vehicle j, lj denotes the mileage in kilometers, zjk denotes the
number of events in the kth class, and xj is the maximum SOLE (j ∈ N≤8913,
k ∈ N≤8).
The mileages of all of the 8913 vehicles add up to

l :=

8913∑
j=1

lj = 97 385 008

kilometers. A total of

n :=

8913∑
j=1

8∑
k=1

zjk = 277 938

SOLEs were generated from these vehicles. Hence, due to Theorem 4.3.2, the
maximum likelihood estimator of µ takes the value

µ̂m =
n

l
=

277 938

97 385 008
≈ 2.854 · 10−3.

The symbol �≈� means that the values are rounded. This symbol is used in the
same way throughout this section.
The value of the test statistic

√
m
2

(
D̂2− 1

)
(see Equation (3.6) on page 40) is√

m
2

(
D̂2 − 1

)
=
√

8913
2

(
39.8128 . . .− 1

)
> 2591.

Since the 99.999 % quantile of the standard normal distribution is smaller than
5, the hypothesis that the number of SOLEs per kilometer is Poisson distributed
can be rejected with all common signi�cance levels (see hypothesis test in Section
3.5.3). Therefore, according to the decision-making procedure in Section 3.5.7,
the number of SOLEs is assumed to be negative binomially distributed. The
value of the maximum likelihood estimator of the exponent % is

%̂m ≈ 9.538 · 10−5.
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The 277 938 observed SOLEs are allocated to the eight classes as follows:(
m∑
j=1

zj1, . . . ,

m∑
j=1

zj8

)
=
(
267 510, 10 217, 206, 4, 1, 0, 0, 0

)
.

The matrix product in Corollary 4.4.7,

(267510 10217 206 4 1 0 0)


0 2 6 12 20 30 42
−2 −2 0 4 10 18 28
−4 −6 −6 −4 0 6 14
−6 −10 −12 −12 −10 −6 0
−8 −14 −18 −20 −20 −18 −14
−10 −18 −24 −28 −30 −30 −28
−12 −22 −30 −36 −40 −42 −42




10217
206
4
1
0
0
0


results in the value −102 115 826. Hence, due to this corollary and Lemma 4.4.6,
the maximum likelihood estimators of shape ξ and scale β are

ξ̂m = 0 and β̂m =
Λ

log
(
1 + 277 938

10 645

) ≈ 3.030 Λ · 10−1 (counting model).

The Fisher information matrix from Theorem 4.2.2 evaluated at the maximum
likelihood estimators amounts to

IC
(
%̂m, µ̂m, ξ̂m, β̂m

)
≈

(
4.478 · 1011 0 0 0

0 1.104 · 109 0 0

0 0 4.319 · 105 7.055 Λ−1 · 105

0 0 7.055 Λ−1 · 105 1.311 Λ−2 · 106

)
.

Since the rounded amount of the 97.5 % quantile of the standard normal dis-
tribution is 1.960, the 95 % con�dence intervals of µ (see Section 4.3.1), ρ (see
Section 4.3.2), ξ and β (see Section 4.4.3 for the case ξ̂m = 0) are

Cµ
(
0.05, (zjk)j,k

)
≈
[
2.795, 2.913

]
· 10−3,

C%
(
0.05, (zjk)j,k

)
≈
[
9.245, 9.831

]
· 10−5,

C0
ξ

(
0.05, (zjk)j,k

)
≈
[
0, 7.205

]
· 10−3,

C0
β

(
0.05, (zjk)j,k

)
≈
[
2.981 Λ, 3.045 Λ

]
· 10−1.

It is striking that the three upper classes are empty. It can be expected that
the accuracy of estimate of ξ and β will be better for smaller classes. An optimal
class length and, furthermore, an optimal class limit con�guration can be found
as described in Section 5.5.4. In this example, the optimal (equidistant) class
limit con�guration is

(
usev, usev + sopt,1, . . . , usev + sopt,7, ∞

)
with(

sopt,1, . . . , sopt,7
)

≈

{(
0.115 Λ, 0.267 Λ, 0.500 Λ, 0.895 Λ, 1.292 Λ, 1.741 Λ, 2.358 Λ

)
(optimal)(

0.270 Λ, 0.540 Λ, 0.810 Λ, 1.080 Λ, 1.350 Λ, 1.620 Λ, 1.890 Λ
)
(opt. equid.).
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With the optimal equidistant class limit con�guration only 22 721 331 kilometers
are su�cient to get the same con�dence interval C0

ξ as above. With the opti-
mal class limit con�guration only 20 315 151 kilometers are needed. This is just
about 23 % and 21 % respectively of the actual observation period l = 97 385 008
kilometers. In case of the scale parameter β, the optimal equidistant class
limit con�guration and an observation period of 18 209 398 kilometers yield
the con�dence interval

[
2.989 Λ · 10−1, 3.053 Λ · 10−1

]
, which is as small as

C0
β from above. The optimal class limit con�guration and the observation pe-

riod 16 743 319 kilometers lead to a con�dence interval of the same size, namely[
2.990 Λ · 10−1, 3.054 Λ · 10−1

]
.

In the counting-maximum model, the numerical calculation (see Section 5.6)
yields

ξ̂m ≈ 3.086 · 10−3 and β̂m ≈ 2.940 Λ · 10−1 (counting-maximum model).

The observed Fisher information matrix from Section 4.5 adds up to

Isev((zjk)jk, (xj)j) ≈

 4.681 · 105 7.806 Λ−1 · 105

7.806 Λ−1 · 105 1.541 Λ−2 · 106

 ,

which leads to the 95 % con�dence intervals (see Equation (4.11) on page 115)

Cξ
(
0.05, (zjk)j,k, (xj)j

)
≈
[
− 4.189, 10.361

]
· 10−3,

Cβ
(
0.05, (zjk)j,k, (xj)j

)
≈
[
2.900 Λ, 2.980 Λ

]
· 10−1.

From the Fisher information matrices one can see that the information content in
the counting-maximum model is higher than in the counting model as expected.
In this example, the con�dence intervals in the counting model are smaller only
because the shape is estimated to be 0 there, and the intervals C0

ξ , C
0
β are in

general smaller than the intervals Cξ, Cβ (see Section 4.4.3).
Based on the estimated parameter values, the distribution of the maximum

SOLE during a reference distance can be calculated. If, for instance, the reference
distance is 100 000 kilometers, the cumulative distribution function of M∗105

sev is
in the counting-model

P
(
M∗105

sev ≤ t
)

=

 %̂m

%̂m + µ̂m exp
(

1

β̂m
(t− usev)1R≥usev (t)

)
105%̂m

∀t ∈ R≥0

(since ξ̂m = 0, see Example 3.4.3), and in the counting-maximum model it is

P
(
M∗105

sev ≤ t
)

=

 %̂m

%̂m + µ̂m
(

1 + ξ̂m
β̂m

(t− usev)1R≥usev (t)
)− 1

ξ̂m


105%̂m

∀t ∈ R≥0.
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Figure 5.5.: Probability density function and cumulative distri-

bution function of M∗105

sev .

Figure 5.5 plots this distribution functions and the corresponding probability
density functions. For example, the values of the 99.9 % quantiles of M∗105

sev are
usev+3.807 Λ in the counting model and usev+3.765 Λ in the counting maximum-
model. Only one vehicle in a thousand will be subjected to higher loads during
a distance of 100 000 kilometers.
Since the data are based on various mileages, the adapted model and the data

concerning the number of SOLEs cannot be compared in a histogram without
further ado. Therefore, for any vehicle the number of observed SOLEs is divided
by the mileage, and this number of SOLEs per kilometer is illustrated in a
histogram (see Figure 5.6). To compare the resultant values with the adapted

model, for each vehicle j a realization ofN
∗lj
num ∼ NBin(%̂mlj , µ̂mlj) is drawn, and,

similar to the real data, this realization is divided by the mileage lj . In this way
a total of 105 histograms are generated. The averaged histogram is illustrated
in Figure 5.6 under the heading �Negative Binomial Fit�. For comparison, a
histogram based on the Poisson model is plotted in the same way under the
heading �Poisson Fit� in Figure 5.6.
The plot shows that the negative binomial model corresponds quite well to

the data. However, within a range close to 0 the distributions vary from each
other. One reason for this might be that the sample of the 8913 vehicles is not
homogeneous enough. The occurrence rate of SOLEs might be in�uenced by
several factors like country or range of models. These external in�uences might
be found by dint of a factor analysis or analysis of variance. Afterwards, for each
subsample an own negative binomial distribution can be �tted.
A second reason for the di�erence between data and model might be that

usev is set too small. If so, the lowest class is not only �lled with SOLEs but
with operating load events, too. Since some assumptions about SOLEs are not
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Figure 5.6.: Histogram of the quotient of num-
ber of observed SOLEs and mileage for all vehi-
cles (blue) in comparison with the theoretical dis-
tribution of this quotient based on the negative
binomial model (green) and based on the Poisson
model (red).

Figure 5.7.: Observed total number of SOLEs
per class (blue) in comparison with the ex-
pected number of SOLEs according to the model
with parameters estimated in the counting model
(green) and in the counting-maximum model
(red).

necessarily right for operating loads, especially Assumption 3.1.3, this might lead
to a mixture distribution. If this is the case, disregard the lowest class and use tj1
as severity threshold instead (of course, this is only possible if t11 = . . . = tm1).
The goodness of �t concerning the severity is visualized in a bar plot (see

Figure 5.7). The blue bars represent the total number of observed SOLEs per
class. The green and red bars represent the expected number of SOLEs during
the observation period l = 97 385 008 kilometers under the presented model,

E
[
Zl,(tj,k−1,tjk]

]

=


µ̂ml

((
1 + ξ̂m

β̂m
(k − 1)Λ

)− 1
ξ̂m −

(
1 + ξ̂m

β̂m
kΛ
)− 1

ξ̂m 1N≤7
(k)

)
, if ξ̂m > 0,

µ̂ml

(
e
− 1
β̂m

(k−1)Λ − e
− 1
β̂m

kΛ
1N≤7

(k)

)
, if ξ̂m = 0.

(see Proposition 3.2.1). The numerical calculation yields(
E
[
Zl,(t10,t11]

]
, . . . , E

[
Zl,(t1,d−1,t1d]

] )
≈
{(

267 685.7, 9 874.2, 364.2, 13.4, 0.50, 0.018, 0.00067, 0.000026
)
(count. model)(

268 513.1, 9 094.0, 318.9, 11.6, 0.43, 0.017, 0.00068, 0.000029
)
(count.-max.mod.).

On the whole, the model is in line with the data. However, the comparison to
the observation per class, which is

(
267 510, 10 217, 206, 4, 1, 0, 0, 0

)
, illustrates

that in the third and in the fourth class the model predicts too much events. A
reason for that might be found in the fact that the ratio of the number of SOLEs
in the �rst class to the number of SOLEs in the third or fourth class is extremely
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high, e. g. the ratio between �rst and third class is 267510/206 > 1298. Thus, the
lowest classes strongly in�uence the estimates of ξ and β. Consequently, if the
severity threshold usev is set too small such that the approximation according
to the Pickands�Balkema�de Haan Theorem (see Theorem 2.4.4) is not suitable,
then the in�uential �rst class may distort the estimate of the actual right tail
of the distribution. This problem can be solved by disregarding the lowest class
and using tj1 as severity threshold, provided that t11 = . . . = tm1.

In the case of the distributions of both the number of SOLEs and the severity
of a SOLE it is proposed to disregard the lowest class (usev,Λ] in order to achieve
a better goodness of �t. When this is done, t11 = usev + Λ is the new severity
threshold. This time, the value of the test statistic

√
m
2

(
D̂2 − 1

)
is√

m
2

(
D̂2 − 1

)
=
√

8913
2

(
23.1219 . . .− 1

)
> 1476.

The values of the maximum likelihood estimators are

µ̂m ≈ 1.071 · 10−4,

%̂m ≈ 3.096 · 10−5,

ξ̂m ≈ 2.761 · 10−2 (counting model),

β̂m ≈ 2.427 Λ · 10−1 (counting model),

ξ̂m ≈ 0.642 · 10−2 (count.-max.model),

β̂m ≈ 2.563 Λ · 10−1 (count.-max.model).

and their 95 % con�dence intervals are

Cµ
(
0.05, (zjk)j,k

)
≈
[
1.027, 1.114

]
· 10−4,

C%
(
0.05, (zjk)j,k

)
≈
[
2.916, 3.275

]
· 10−5,

Cξ
(
0.05, (zjk)j,k

)
≈
[
− 3.172, 8.694

]
· 10−2 (counting model),

Cβ
(
0.05, (zjk)j,k

)
≈
[
2.116 Λ, 2.737 Λ

]
· 10−1 (counting model),

Cξ
(
0.05, (zjk)j,k, (xj)j

)
≈
[
− 1.579, 2.863

]
· 10−2 (count.-max.model),

Cβ
(
0.05, (zjk)j,k, (xj)j

)
≈
[
2.469 Λ, 2.656 Λ

]
· 10−1 (count.-max.model).

The 99.9 % quantiles ofM∗105

sev are a little bit smaller than before: in the counting
model usev + 3.566 Λ and in the counting-maximum model usev + 3.450 Λ. The
whole distribution of M∗105

sev is plotted in Figure 5.8. Take into consideration
that the abscissa is shifted by one compared with Figure 5.5.
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Figure 5.8.: Probability density function and

cumulative distribution function of M∗105

sev ;
based on data with class 2 as lowest class.

Figure 5.9.: Observed total number of SOLEs
per class (blue) in comparison with the ex-
pected number of SOLEs according to the model
with parameters estimated in the counting model
(green) and in the counting-maximum model
(red); based on data with class 2 as lowest class.

This time, the expected numbers of SOLEs per class are(
E
[
Zl,(t11,t12]

]
, . . . , E

[
Zl,(t1,d−1,t1d]

] )
≈

{(
10 217.5, 204.3, 6.0, 0.24, 0.012, 0.00079, 0.000068

)
(counting model)(

10 207.0, 215.9, 5.0, 0.13, 0.0035, 0.00010, 0.0000035
)
(count.-max. mod.)

which �ts in very well with the data (see Figure 5.9). This can also be veri-
�ed quantitatively by dint of either Person's chi-squared goodness-of-�t test or
the similar likelihood-ratio goodness-of-�t test [UC11, HCBNM02, pp. 14�15].
Pearson's test and the likelihood-ratio test use the test statistics χ2 and G2

respectively with

χ2 =

8∑
k=2

(∑8913
j=1 zjk − E

[
Zl,(t1,k−1,t1k]

])2

E
[
Zl,(t1,k−1,t1k]

] ≈ 3.121,

G2 = 2

5∑
k=2

8913∑
j=1

zjk log

( ∑8913
j=1 zjk

E
[
Zl,(t1,k−1,t1k]

]
)
≈ 2.122 .

According to theory [HCBNM02, pp. 14�15], under the null hypothesis (i. e.
data follow the distribution provided by the model) both χ2 and G2 are approx-
imately chi-squared distributed with 4 degrees of freedom (seven classes minus
one minus two estimated parameters ξ, β; note that µ̂ml =

∑8913
j=1

∑8
k=2 zjk is

the total number of events), which corresponds to the distribution of the sum of
4 squared standard normal variates [UC11]. The 95 % quantile of a chi-squared
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Figure 5.10.: Histogram of the quotient of number of observed SOLEs and mileage for all vehicles (blue)
in comparison with the theoretical distribution of this ratio based on the negative binomial model (green) and
based on the Poisson model (red); based on data with class 2 as lowest class.

distribution with 4 degrees of freedom approximately is 9.488. Therefore, both
tests do not reject the null hypothesis. For the initial estimation above where
also the �rst class (usev, usev + Λ] is taken into account, the test statistics would
be χ2 ≈ 87.916 and G2 ≈ 103.152. In that situation, both tests would reject the
null hypothesis that the data correspond to the model.
The adapted model concerning the number of SOLEs approximates the data

very well, too, as can be seen in Figure 5.10. The �gure is generated in the same
way as Figure 5.6 above. Even though the goodness-of-�t tests from above would
reject the null hypothesis that data and model �t together (both test statistics
χ2 and G2 take values larger than 100), it is nevertheless not advisable to reject
the negative binomial distribution, because the courses of the histograms of
observation and negative binomial �t are very similar to each other. On the
contrary, the distribution of the number of observed SOLEs may be a mixed
distribution consisting of several negative binomial distributions since the sample
is not homogeneous enough.





6. Résumé

Section 5.7 in the previous chapter illustrates two things: �rstly, it shows that
the model presented in Chapter 3 is together with the parameter estimation
procedure from Chapter 4 suitable for processing the available data and for
answering the questions from Chapter 2. Secondly, it describes a work�ow for
the analysis of the present data:

1. Calculate the maximum likelihood estimator µ̂m of the average number µ
of SOLEs during one kilometer (see Theorem 4.3.2) and the corresponding
actual con�dence interval Cµ(α, z) (see Equation (4.3) on page 77).

2. Utilize the hypothesis test in Section 3.5.3 in order to check whether the
number of SOLEs during one kilometer is statistically dispersed or not.
Choose the binomial (Bernoulli), Poisson or the negative binomial distri-
bution by following the rules of Section 3.5.7.

3. If step 2 suggests a negative binomial distribution for the number of SOLEs
per kilometer, calculate the maximum likelihood estimator %̂m of the ex-
ponent % (see Theorem 4.3.7, Section 5.3.1) and the corresponding actual
con�dence interval C%(α, z) (see Equation (4.5) on page 85).

4. Check whether the maximum likelihood estimator ξ̂m of the shape ξ of the
severity of any SOLE is equal to 0 or positive. If the counting model is
chosen (see Section 4.2.1) and all class limits are equidistant with the same
class length, use Corollary 4.4.7 for that. Otherwise, follow Algorithm 3 on
page 134, lines 1-4, with Φ1, Φ2 either from Section 5.5.1 or from Section
5.6.1. If ξ̂m = 0, Corollary 4.4.7 and Algorithm 3 respectively guide how
to calculate the maximum likelihood estimator β̂m of the scale β of the
severity of a SOLE. In addition, calculate the actual con�dence intervals
C0
ξ (α, z) and C0

β(α, z) (see Equation (4.9) on page 103) or C0
ξ (α, z, x) and

C0
β(α, z, x) (see Equation (4.12) on page 115).

5. If step 4 suggests ξ̂m ∈ R>0, utilize Algorithm 3 on page 134 with Φ1, Φ2

from Section 5.5.1 or from Section 5.6.1 in order to calculate the maximum
likelihood estimators ξ̂m and β̂m of shape ξ and scale β of the severity of a
SOLE, respectively. Furthermore, calculate the actual con�dence intervals
Cξ(α, z) and Cβ(α, z) (see Equation (4.7) on page 101) or Cξ(α, z, x) and
Cβ(α, z, x) (see Equation (4.11) on page 115).
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6. Prepare the goodness-of-�t plots described in Section 5.7 (see Figure 5.6,
Figure 5.7, Figure 5.9 and Figure 5.10) in order to check whether the
severity threshold usev is set large enough. The goodness of �t can also
be veri�ed via Pearson's chi-squared or the likelihood-ratio goodness-of-�t
test as described in Section 5.7.

7. If needed, the arrangement of the class limits can be optimized (see Section
4.4.4, Section 5.5.4), and the necessary observation period can be estimated
(see Example 4.3.6, Example 4.3.8, Section 5.5.4).

8. Use the maximum likelihood estimators to determine the distribution of
the number of SOLEs in any measurable set A during any mileage l, Zl,A
(see Proposition 3.2.1), the distribution of the maximum SOLE during l
kilometers, M∗lsev (see Proposition 3.4.2), and the respective common dis-
tributions (see Theorem 3.2.3, Theorem 3.4.4).

The particular sections in Chapter 5 clearly demonstrate by examination of
typical examples that the maximum likelihood method yields adequate estimates
of the distribution parameters. Furthermore, the Poisson hypothesis test devel-
oped in Section 3.5 is very accurate and suitable for testing the index of dispersion
of the number of SOLEs during one kilometer.

If the goodness-of-�t plots and tests suggest a bad �t to the data, an initial
improvement can be achieved by disregarding the lowest class(es). Section 5.7
argues that some model assumptions cannot be correct if the severity threshold is
too low, e. g. the generalized Pareto approximation. The data analysis in Section
5.7 shows that the adjustment of the model to the data becomes much better
after disregarding the lowest class.
If this procedure does not help, the data are possibly not homogeneous, i. e.

the available sample is a mixed population. Some kind of analysis of variance can
help to �nd the particular subpopulations. For this purpose, de�ne in�uential
factors and divide the whole population into cells where each cell represents
one combination of levels of the factors. In each cell, calculate the maximum
likelihood estimators of the distribution parameters. The vector of the three
or four estimators forms the �observation� of the particular cell. In order to
point that the estimators of di�erent cells do not have the same accuracy level
since the sample sizes, the numbers of observed SOLEs and the mileages are
di�erent, the estimators can be weighted by the Fisher information. An analysis
of variance can specify if a factor in�uences the value of one or more estimators.
A realization of this idea is in progress.



A. Lemmata

A.1 Lemma. Let be a ∈ R>0 and

f : R≥0 ×R>0 → (0, 1) : (x1, x2) 7−→


(

1 + x1
x2
a
)− 1

x1 , if x1 > 0,

e
− 1
x2
a
, if x1 = 0.

1. f is continuous.

2. f is continuously di�erentiable1 and the partial derivatives are (i ∈ {1, 2})

∂f
∂xi

: R≥0 ×R>0 → R : (x1, x2) 7−→ f(x1, x2)
a

x2
2 + x1x2a

ϕi
(
x1
x2
, a
)
,

where

ϕi(x, a) := 1{2}(i) + 1{1}(i) ·

{
1
x

(
log(1 + xa)

(
1 + 1

xa

)
− 1
)
, if xa > 0,

a
2
, if xa = 0.

3. ∂f
∂xi

is continuously di�erentiable1 and the partial derivatives are

∂2f
∂xj∂xi

: R≥0 ×R>0 → R

(x1, x2) 7−→ f(x1, x2)

(
a

x2
2 + x1x2a

)2

φji(x1, x2, a)

(i, j ∈ {1, 2}), where

φji(x1, x2, a) := ϕi
(
x1
x2
, a
)(

ϕj
(
x1
x2
, a
)
−x2 1{1}(j)−

(
2
x2

a
+ x1

)
1{2}(j)

−
(x2

a
+ x1

)
1{1}(i) ϕ̃j

(
x1
x2
, a
))

,

ϕi is de�ned as in the second statement, and

ϕ̃j(x, a) :=


log(1+xa)(1+ 2

xa )−2

log(1+xa)(1+ 1
xa )−1

(
1{1}(j)

x
− 1{2}(j)

)
, if xa > 0,

a
3
1{1}(j) , if xa = 0.

1at x1 = 0 this means the right derivative
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4. For any x ∈ R≥0 and y ∈ R>0 it holds

lim
x1→x
x2→0

f(x1, x2) = 0, lim
x1→x
x2→∞

f(x1, x2) = 1,

lim
x1→∞
x2→y

f(x1, x2) = 1, lim
x1→∞
x2→∞

f(x1, x2) = 1.

5. Suppose, (x1,n, x2,n)n∈N ⊆ R>0 × R>0 is a sequence with x1,n → ∞ and
x2,n → 0 for n→∞ such that the limit

b := lim
n→∞

x2,n

1
x1,n ∈ [0, 1]

exists, then

lim
n→∞

f(x1,n, x2,n) = b.

Proof. 1.: The points (x1, x2) ∈ {0} ×R>0 are the only values where the con-
tinuity could be destroyed. Suppose, (x1,n, x2,n)n∈N ∈ R>0 ×R>0 is a sequence
with

lim
n→∞

(x1,n, x2,n) = (0, x0) ∈ {0} ×R>0.

Since x1,n > 0 for all n ∈ N, it is

lim
n→∞

f(x1,n, x2,n) = lim
n→∞

(
1 +

x1,n

x2,n
a

)− 1
x1,n

= exp

(
− lim
n→∞

log

(
1+

x1,n

x0
a

)
x1,n

)
.

According to l'Hôpital's Rule [For04, p. 171] the limit within the exponential
function is

lim
n→∞

log
(

1 +
x1,n

x0
a
)

x1,n
= lim
n→∞

1
x0
a

1 +
x1,n

x0
a

=
1

x0
a.

Hence,

lim
n→∞

f (x1,n, x2,n) = exp
(
− 1
x0
a
)

= f(0, x0) = f
(

lim
n→∞

(x1,n, x2,n)
)
.

2.: One manages to calculate the derivative with respect to x2 with help of
the standard rules from di�erential calculus. Furthermore, ∂f

∂x2
is continuous

because f and a
x2

2+x1x2a
are continuous.

The derivative of f with respect to x1 can be calculated easily if x1 ∈ R>0. In
case of x1 = 0, �rst, discover with help of l'Hôspital's Rule [For04, p. 171] that

lim
x↘0

ϕ1(x, a) = lim
x↘0

log(1 + xa) (xa+ 1)− xa
x2a

= lim
x↘0

a log(1 + xa)

2xa

= lim
x↘0

a

2(1 + ax)

=
a

2
,
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and so it follows

lim
x1↘0

∂f
∂x1

(x1, x2) = f(0, x2) · 1

2

(
a

x2

)2

∈ R ∀x2 ∈ R>0.

Since this limit exists, it has to be the partial derivative at x1 = 0 from the
right. The continuity of ∂f

∂x1
follows from the continuity of f and the limiting

calculations above.

3.: It is easy to check that

φji(x1, x2, a)

= ϕi
(
x1
x2
, a
)ϕj(x1

x2
, a
)

+

∂
∂xj

a
x2

2+x1x2a(
a

x2
2+x1x2a

)2 +

∂
∂xj

ϕi
(
x1
x2
, a
)

ϕi
(
x1
x2
, a
)

a
x2

2+x1x2a

 .

With that, for j = 2, i ∈ {1, 2} and (x1, x2) ∈ R≥0 ×R>0 as well as for j = 1,
i ∈ {1, 2} and (x1, x2) ∈ R>0×R>0 it follows from the second statement of this
lemma

f(x1, x2)

(
a

x2
2 + x1x2a

)2

φji(x1, x2, a)

= f(x1, x2)
a ϕi

(
x1
x2
, a
)

x2
2 + x1x2a

 ∂f
∂xj

(x1, x2)

f(x1, x2)
+

∂
∂xj

a
x2

2+x1x2a

a
x2

2+x1x2a

+

∂
∂xj

ϕi
(
x1
x2
, a
)

ϕi
(
x1
x2
, a
)


=
∂

∂xj

(
f(x1, x2)

a

x2
2 + x1x2a

ϕi
(
x1
x2
, a
))

= ∂2f
∂xj∂xi

(x1, x2).

Furthermore, the function ϕ̃j( · , a) is continuous, because on the one hand it
holds due to l'Hôspital's Rule [For04, p. 171]

lim
x↘0

log(1 + xa) (1 + 2
xa

)− 2

x2
= lim
x↘0

log(1 + xa) (xa+ 2)− 2xa

x3a

= lim
x↘0

a log(1 + xa)− xa2

xa+1

3x2a

= lim
x↘0

xa3

(xa+1)2

6xa
=
a2

6
,

and, on the other hand, it holds

lim
x↘0

log(1 + xa) (1 + 1
xa

)− 1

x
=
a

2
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as shown above. Hence, the limit

lim
x1↘0

∂2f
∂xj∂xi

(x1, x2) = f(0, x2)
a2

x2
4
φji(0, x2, a)

exists and must therefore be the second partial derivative with respect to x1

from the right at x1 = 0.

4.: The �rst two limits are

lim
x1→x
x2→0

f(x1, x2) = lim
x2→0

f(x, x2) = 0, lim
x1→x
x2→∞

f(x1, x2) = lim
x2→∞

f(x, x2) = 1.

The third limit follows with help of l'Hôspital's Rule [For04, p. 171]:

lim
x1→∞
x2→y

f(x1, x2) = lim
x1→∞

f(x1, y) = exp

(
− lim
x1→∞

log
(
1+

x1
y
a
)

x1

)
= exp

(
− lim
x1→∞

1
y
a

1+
x1
y
a

)
= 1.

At last, since f is monotonically increasing in x2, it holds

1 ≥ lim
x1→∞
x2→∞

f(x1, x2) ≥ lim
x1→∞
x2→y

f(x1, x2) = 1.

5.: The assumptions of the proposition yield

lim
n→∞

f(x1,n, x2,n) = lim
n→∞

x2,n

1
x1,n exp

(
− log(x2,n+x1,na)

x1,n

)
= b exp

(
− lim
n→∞

log(x1,na)
x1,n

)
= b.
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A.2 Lemma. For any a ∈ R>0 de�ne

fa : R>0 → R : x 7−→ 1

x

(
log(1 + ax)

(
1 +

1

ax

)
− 1

)
,

then:

1. fa is positive.

2. fa is strictly decreasing.

3. fa is strictly convex.

4. Supremum and in�mum of fa are

sup
x∈R>0

fa(x) = lim
x→0

fa(x) =
a

2
and inf

x∈R>0

fa(x) = lim
x→∞

fa(x) = 0.

Proof. 1.: fa(x) is positive if and only if

log(1 + ax) (ax+ 1)
!
> ax.

Both sides are equal to 0 if x = 0, and the left-hand side increases faster than
the right-hand side,

d

dx

(
log(1 + ax) (ax+ 1)

)
= a(1 + log(1 + ax)) > a =

d

dx
ax ∀x ∈ R>0.

Thus, the inequality above must hold.

2.: fa is strictly decreasing if and only if the �rst derivative of fa,

dfa
dx

(x) =
1

x2

(
2− log(1 + ax)

(
1 +

2

ax

))
∀x ∈ R>0

is negative [For04, p. 165], and dfa
dx

(x) is negative if and only if

log(1 + ax) (ax+ 2)
!
> 2ax.

Both sides are equal to 0 if x = 0, and the left-hand side increases faster than
the right-hand side,

d

dx

(
log(1 + ax) (ax+ 2)

)
= a

(
1 +

1

1 + ax
+ log(1 + ax)

)
> 2a =

d

dx
2ax

for all x ∈ R>0. Thus, the inequality above must hold.
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3.: fa is strictly convex if and only if the second derivative of fa,

d2fa
dx2 (x) =

1

x3

(
2 log(1 + ax)

(
1 +

3

ax

)
− 1

1 + ax
− 5

)
∀x ∈ R>0

is positive [For04, p. 166], and d2fa
dx2 (x) is positive if and only if

2 log(1 + ax) (ax+ 3)
!
> 5ax+

ax

1 + ax
.

Both sides are equal to 0 if x = 0, and the left-hand side increases faster than
the right-hand side,

d

dx

(
2 log(1 + ax) (ax+ 3)

)
= a

(
2 +

1

1 + ax
+ 2 log(1 + ax)

)
= a

(
2 +

1

(1 + ax)2
+

3 + 4ax

(1 + ax)2
+ 2 log(1 + ax)

)
> a

(
2 +

1

(1 + ax)2
+ 3

)
=

d

dx

(
5ax+

ax

1 + ax

)
∀x ∈ R>0.

Thus, the inequality above must hold.

to 4.: It is well-known that

lim
x→∞

fa(x) = lim
x→∞

(
log(1 + ax)

x
+

log(1 + ax)

ax2
− 1

x

)
= 0.

Since fa is decreasing, this limit is also the in�mum of fa.
According to l'Hôpital's Rule [For04, p. 171] it holds

lim
x→0

log(1 + ax)

x
= lim
x→0

a

1 + ax
= a

and

lim
x→0

log(1 + ax)− ax
ax2

= lim
x→0

a
1+ax

− a
2ax

= lim
x→0

−a2

(1+ax)2

2a
= −a

2
.

Thus, fa(x) tends to a
2
if x approaches 0. Since fa is decreasing, this is also its

supremum.
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A.3 Lemma. For any a ∈ R>0 de�ne

fa : R>0 → R : x 7−→
x
(

1− e−
a
x+1

)
e
xa
x+1 − 1

,

then:

1. fa is strictly decreasing.

2. Supremum and in�mum of fa are

sup
x∈R>0

fa(x) =
1− e−a

a
< 1 and inf

x∈R>0

fa(x) =
a

ea − 1
> e−a.

Proof. 1.: fa is strictly decreasing if and only if its derivative is negative [For04,
p. 165]. The derivatives of numerator and denominator of fa are

d

dx

(
x− xe−

a
x+1

)
= 1− e−

a
x+1 − xa

(x+ 1)2
e−

a
x+1

d

dx

(
e
xa
x+1 − 1

)
=

a

(x+ 1)2
e
xa
x+1 .

Since the quotient rule from di�erential calculus holds [For04, p. 154], fa is
strictly decreasing if the product of numerator and derivative of denominator
is greater than the product of denominator and derivative of numerator for ev-
ery x ∈ R>0. So, it has to be shown that(
x− xe−

a
x+1

)( d

dx

(
e
xa
x+1 − 1

))
!
>
(

e
xa
x+1 − 1

)( d

dx

(
x− xe−

a
x+1

))
∀x ∈ R>0

which is equivalent to the inequation

a (ea − 1)
!
>

(x+ 1)2

x

(
ea − e

xa
x+1 − e

a
x+1 + 1

)
∀x ∈ R>0.

The left-hand side can be expressed by integrals,

a (ea − 1) =

∫ a

0

(
(b+ 1)eb − 1

)
db =

∫ a

0

∫ b

0

(2 + c)ec dc db

=

∫ a

0

∫ b

0

(
2 +

∫ c

0

1 dy

)
ec dc db,
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as well as the right-hand side,

(x+ 1)2

x

(
ea − e

xa
x+1 − e

a
x+1 + 1

)
=

(x+ 1)2

x

∫ a

0

(
eb − x

x+ 1
e
xb
x+1 − 1

x+ 1
e

b
x+1

)
db

=

∫ a

0

∫ b

0

(
(x+ 1)2

x
ec − x e

xc
x+1 − 1

x
e

c
x+1

)
dc db

=

∫ a

0

∫ b

0

(
2 +

∫ c

0

x e−
y
x+1 + e−

yx
x+1

x+ 1
dy

)
ec dc db.

Since it is
xe−

y
x+1 + e−

yx
x+1

x+ 1
< 1 ∀x, y ∈ R>0,

the inequation above really holds.

2.: fa is strictly decreasing, hence

sup
x∈R>0

fa(x) = lim
x→0

fa(x) and inf
x∈R>0

fa(x) = lim
x→∞

fa(x).

l'Hôspital's Rule [For04, p. 171] yields

lim
x→0

fa(x) = lim
x→0

1− e−
a
x+1 − xa

(x+1)2
e−

a
x+1

a
(x+1)2

e
xa
x+1

=
1− e−a

a

and

lim
x→∞

fa(x) =
1

ea − 1
lim
x→∞

1− e−
a
x+1

1
x

=
1

ea − 1
lim
x→∞

− a
(x+1)2

e−
a
x+1

− 1
x2

=
a

ea − 1
.

The fact

1− e−a =

∫ a

0

e−b db <

∫ a

0

1 db = a ∀a ∈ R>0

�nishes the proof.
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A.4 Lemma. Let the situation be as in Theorem 3.5.2 with E1, E2, V1 and V2

as de�ned there, then it holds

E[E1] = E
[

1
L

]
E[Nnum] , E[V1] = E

[
1
L

]
Var[Nnum] ,

E[E2] = E[Nnum] , E[V2] = Var[Nnum]− 1

m
Var[Nnum] ,

and

Var[E1] =
1

m

(
E
[

1
L3

]
Var[Nnum] + Var

[
1
L

]
E[Nnum]2

)
,

Var[E2] =
1

m
E
[

1
L

]
Var[Nnum] ,

Var[V1] =
1

m

(
E
[

1
L3

]
κ4[Nnum] +

(
3E
[

1
L2

]
− E

[
1
L

]2)Var[Nnum]2
)

+O
(
m−2) ,

Var[V2] =
1

m

(
E
[

1
L

]
κ4[Nnum] + 2Var[Nnum]2

)
+O

(
m−2) ,

and

Cov[V1, E1] =
1

m

(
E
[

1
L3

]
κ3[Nnum] + Var

[
1
L

]
Var[Nnum]E[Nnum]

)
+O

(
m−2) ,

Cov[V2, E2] =
1

m
E
[

1
L

]
κ3[Nnum] +O

(
m−2) .

Proof. Before calculating the expectations, variances and covariances, note that
the additivity of the cumulants (see Section 2.4.6) ensure that

κn
[
N∗Lnum

∣∣∣L] =

L∑
i=1

κn[Nnum|L] = Lκn[Nnum] ∀n ∈ N,

because it is N∗Lnum =
∑L
i=1 Ni with statistically independent and identically

distributed variates Ni, Ni ∼ Nnum. In addition, some formulas in Section 2.4.6
show that the moments of a random variable are polynomials in cumulants.
According to these formulas and due to

E
[

(N∗Lnum)n

Lc

]
= E

[
1
Lc

E
[(
N∗Lnum

)n∣∣∣L]] ∀c ∈ R, ∀n ∈ N,
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it holds for all c ∈ R

E
[
N∗Lnum
Lc

]
= E

[
1

Lc−1

]
κ1[Nnum] ,

E
[

(N∗Lnum)2

Lc

]
= E

[
1

Lc−1

]
κ2[Nnum] + E

[
1

Lc−2

]
κ1[Nnum]2 ,

E
[

(N∗Lnum)3

Lc

]
= E

[
1

Lc−1

]
κ3[Nnum] + 3E

[
1

Lc−2

]
κ2[Nnum]κ1[Nnum]

+ E
[

1
Lc−3

]
κ1[Nnum]3 ,

E
[

(N∗Lnum)4

Lc

]
= E

[
1
Lc

]
κ4[Nnum]

+ E
[

1
Lc−2

] (
4κ3[Nnum]κ1[Nnum] + 3κ2[Nnum]2

)
+ 6E

[
1

Lc−3

]
κ2[Nnum]κ1[Nnum]2

+ E
[

1
Lc−4

]
κ1[Nnum]4 .

(A.1)

� calculation of E[E1] and E[E2]:
The equations in Equation (A.1) above directly yield

E[Ei] =
1

m

m∑
j=1

E
[

NLj
Lj3−i

]
= E

[
N∗Lnum
L3−i

]
= E

[
1

L2−i

]
E[Nnum] ∀i ∈ {1, 2}.

� calculation of E[V1]:
Since V1 is an unbiased estimator of the variance of NL1/L1 ∼ N∗Lnum/L [LC98, p 55],
it holds

E[V1] = Var
[
N∗Lnum
L

]
.

Now, the equations in Equation (A.1) above yield

Var
[
N∗Lnum
L

]
= E

[
(N∗Lnum)2

L2

]
− E

[
N∗Lnum
L

]2
= E

[
1
L

]
κ2[Nnum] = E

[
1
L

]
Var[Nnum] .

� calculation of E[V2]:
By de�nition, the expectation of V2 is

E[V2] =
1

m

m∑
j=1

E
[
NLj

2

Lj

]
− 1

m
E
[

(
∑m
j=1 NLj)

2∑m
j=1 Lj

]
= E

[
(N∗Lnum)2

L

]
− 1

m
E
[

(
∑m
j=1 NLj)

2∑m
j=1 Lj

]
.

On the one hand, the equations in Equation (A.1) at the beginning of this proof
verify that

E
[

(N∗Lnum)2

L

]
= Var[Nnum] + E[L]E[Nnum]2 .
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On the other hand, the de�nition of N∗Lnum =
∑L
i=1 Ni with statistically indepen-

dent and identically distributed Ni, Ni ∼ Nnum, ensures

E
[

(
∑m
j=1 NLj)

2∑m
j=1 Lj

∣∣∣∣ (Lj)1≤j≤m

]

=
Var

[∑m
j=1 NLj

∣∣∣ (Lj)1≤j≤m

]
+ E

[∑m
j=1 NLj

∣∣∣ (Lj)1≤j≤m

]2∑m
j=1 Lj

=

∑m
j=1 Var

[
N
∗Lj
num

∣∣∣Lj]+
(∑m

j=1 E
[
N
∗Lj
num

∣∣∣Lj])2∑m
j=1 Lj

=

(∑m
j=1 Lj

)
Var[Nnum] +

(∑m
j=1 Lj

)2

E[Nnum]2∑m
j=1 Lj

,

and therefore

1

m
E
[

(
∑m
j=1 NLj)

2∑m
j=1 Lj

]
=

1

m
E
[
E
[

(
∑m
j=1 NLj)

2∑m
j=1 Lj

∣∣∣∣ (Lj)1≤j≤m

]]
=

1

m
Var[Nnum] + E[L]E[Nnum]2 .

� calculation of Var[E1] and Var[E2]:
By de�nition, the variance of Ei is

Var[Ei]=
1

m2

m∑
j=1

Var
[

NLj
Lj3−i

]
=

1

m
Var

[
N∗Lnum
L3−i

]
=

1

m

(
E
[

(N∗Lnum)2

L6−2i

]
− E

[
N∗Lnum
L3−i

]2)

for all i ∈ {1, 2}. Hence, the equations in Equation (A.1) at the beginning of
this proof directly yield

Var[Ei] =
1

m

(
E
[

1
L5−2i

]
κ2[Nnum] + E

[
1

L4−2i

]
κ1[Nnum]2 − E

[
1

L2−i

]2
κ1[Nnum]2

)
=

1

m

(
E
[

1
L5−2i

]
Var[Nnum] + Var

[
1

L2−i

]
E[Nnum]2

)
for all i ∈ {1, 2}.

� calculation of Var[V1]:
Since V1 is the (unbiased) sample variance of NL1/L1 ∼ N∗Lnum/L, it holds due to
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Cramér [Cra62, pp. 366�367]

Var[V1] =
m
(
C4 − C2

2
)

(m− 1)2
−

2
(
C4 − 2C2

2
)

(m− 1)2
+

(
C4 − 3C2

2
)

m(m− 1)2

=

(
C4 − C2

2
)

m
+

2C2
2

m(m− 1)

=

(
C4 − C2

2
)

m
+O

(
m−2) ,

where

C4 := E
[(

N∗Lnum
L
− E

[
N∗Lnum
L

])4
]

and C2 := Var
[
N∗Lnum
L

]
.

The facts from Section 2.4.6 and the relations in Equation (3.8) on page 44 yield

C4 − C2
2 = κ4

[
N∗Lnum
L

]
+ 2κ2

[
N∗Lnum
L

]2
= E

[
1
L3

]
κ4[Nnum] + 3Var

[
1
L

]
κ2[Nnum]2 + 2E

[
1
L

]2
κ2[Nnum]2 .

Finally, note that it holds by de�nition 3Var
[

1
L

]
+ 2E

[
1
L

]2
= 3E

[
1
L2

]
− E

[
1
L

]2
and κ2[Nnum] = Var[Nnum].

� calculation of Var[V2]:
By de�nition, the variance of V2 satis�es

Var[V2]

=
1

m2

m∑
j=1

Var
[
NLj

2

Lj

]
+

1

m2
Var

[
(
∑m
j=1 NLj)

2∑m
j=1 Lj

]
− 2

m2

m∑
j=1

Cov

[
NLj

2

Lj
,

(
∑m
i=1 NLi)

2∑m
i=1 Li

]

=
1

m
Var

[
(N∗Lnum)2

L

]
+

1

m2
Var

[
(
∑m
j=1 NLj)

2∑m
j=1 Lj

]
− 2

m
Cov

[
NL1

2

L1
,

(
∑m
i=1 NLi)

2∑m
i=1 Li

]
.

At �rst, let us calculate both variance terms. The equations in Equation (A.1)
at the beginning of this proof yield

1

m
Var

[
(N∗Lnum)2

L

]
=

1

m

(
E
[

(N∗Lnum)4

L2

]
− E

[
(N∗Lnum)2

L

]2)
=

1

m

(
E
[

1
L

]
κ4[Nnum] + 4κ3[Nnum]κ1[Nnum] + 2κ2[Nnum]2

+ 4E[L]κ2[Nnum]κ1[Nnum]2 + Var[L]κ1[Nnum]4
)
. (A.2)
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Since the additivity of the cumulants (see Section 2.4.6) ensure

κn
[∑m

j=1 NLj

∣∣∣ (Lj)j∈N] =

m∑
j=1

κn
[
N
∗Lj
num

∣∣∣Lj] =

m∑
j=1

Lj∑
i=1

κn[Nnum|Lj ]

=

m∑
j=1

Lj κn[Nnum] ∀n ∈ N,

Equation (A.1) can also be formulated for
∑m
j=1 NLj and

∑m
j=1 Lj instead of

N∗Lnum and L respectively, which yields

1

m2
Var

[
(
∑m
j=1 NLj)

2∑m
j=1 Lj

]
=

1

m2

(
E
[

(
∑m
j=1 NLj)

4

(
∑m
j=1 Lj)

2

]
+ E

[
(
∑m
j=1 NLj)

2∑m
j=1 Lj

]2
)

=
1

m2

(
E
[

1∑m
j=1 Lj

]
κ4[Nnum] + 4κ3[Nnum]κ1[Nnum] + 2κ2[Nnum]2

+ 4mE[L]κ2[Nnum]κ1[Nnum]2 +mVar[L]κ1[Nnum]4
)

=
1

m

(
4E[L]κ2[Nnum]κ1[Nnum]2 + Var[L]κ1[Nnum]4

)
+O

(
m−2) . (A.3)

With this, the variance terms are calculated. Secondly, the covariance term is
needed,

Cov

[
NL1

2

L1
,

(
∑m
i=1 NLi)

2∑m
i=1 Li

]
= E

[
NL1

2

L1

(
∑m
i=1 NLi)

2∑m
i=1 Li

]
− E

[
NL1

2

L1

]
E
[

(
∑m
i=1 NLi)

2∑m
i=1 Li

]
.

According to Equation (A.1), the rear expectation terms are

E
[
NL1

2

L1

]
E
[

(
∑m
i=1 NLi)

2∑m
i=1 Li

]
= κ2[Nnum]2 + (m+ 1)E[L]κ2[Nnum]κ1[Nnum]2 +mE[L]2 κ1[Nnum]4 . (A.4)

For the calculation of the fore expectation term, de�ne the random variables
Km :=

∑m
i=2 Lj , K := (Lj)j∈N and Hm :=

∑m
j=2 NLj , so that

E
[
NL1

2

L1

(
∑m
i=1 NLi)

2∑m
i=1 Li

∣∣∣∣ (Lj)j∈N] = E
[
NL1

2

L1

(NL1+Hm)2

L1+Km

∣∣∣K] .
Similar to above, the additivity of the cumulants (see Section 2.4.6) ensure

κn[NL1|K ] = L1 κn[Nnum] and κn[Hm|K ] = Km κn[Nnum] ∀n ∈ N.
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Moreover, Section 2.4.6 provides formulas which shows that the moments of a
random variable are polynomials in cumulants. These formulas together with
the additivity of the cumulants yield

E
[
NL1

2

L1

(NL1+Hm)2

L1+Km

∣∣∣K]
=

E
[
NL1

4
∣∣K ]+ 2E

[
NL1

3
∣∣K ]E[Hm|K ] + E

[
NL1

2
∣∣K ]E[Hm2

∣∣K ]
L1(L1 +Km)

=
6L1

2 + 7L1Km +Km
2

L1 +Km
κ2[Nnum]κ1[Nnum]2 +

3L1 +Km

L1 +Km
κ2[Nnum]2

+
L1

3 + 2L1
2Km + L1Km

2

L1 +Km
κ1[Nnum]4 +

4L1 + 2Km

L1 +Km
κ3[Nnum]κ1[Nnum]

+
1

L1 +Km
κ4[Nnum] .

This can be simpli�ed to

E
[
NL1

2

L1

(NL1+Hm)2

L1+Km

∣∣∣K] = (6L1 +Km)κ2[Nnum]κ1[Nnum]2 + κ2[Nnum]2

+
(
L1

2 + L1Km

)
κ1[Nnum]4 + 2κ3[Nnum]κ1[Nnum]

+
2L1

(
κ2[Nnum]2 + κ3[Nnum]κ1[Nnum]

)
+ κ4[Nnum]

L1 +Km
.

The expectation of this term is

E
[
NL1

2

L1

(NL1+Hm)2

L1+Km

]
= E

[
E
[
NL1

2

L1

(NL1+Hm)2

L1+Km

∣∣∣K]]
= (5 +m)E[L]κ2[Nnum]κ1[Nnum]2 + κ2[Nnum]2

+
(
E
[
L2]+ (m− 1)E[L]2

)
κ1[Nnum]4 + 2κ3[Nnum]κ1[Nnum]

+O
(
m−1) .

Together with Equation (A.4) from above, this yields

1

m
Cov

[
NL1

2

L1
,

(
∑m
i=1 NLi)

2∑m
i=1 Li

]
=

1

m

(
4E[L]κ2[Nnum]κ1[Nnum]2 + Var[L]κ1[Nnum]4 + 2κ3[Nnum]κ1[Nnum]

)
+O

(
m−2) .

This last result leads together with Equation (A.2) and Equation (A.3) from
above to

Var[V2] =
1

m
Var

[
(N∗Lnum)2

L

]
+

1

m2
Var

[
(
∑m
j=1 NLj)

2∑m
j=1 Lj

]
− 2

m
Cov

[
NL1

2

L1
,

(
∑m
i=1 NLi)

2∑m
i=1 Li

]
=

1

m

(
E
[

1
L

]
κ4[Nnum] + 2Var[Nnum]2

)
+O

(
m−2) .
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� calculation of Cov[V1, E1]:
The covariance of V1 and E1 is

Cov[V1, E1] = Cov

[
1

m−1

∑m
j=1

(
NLj
Lj
− 1

m

∑m
i=1

NLi
Li

)2

, 1
m

∑m
j=1

NLj
Lj2

]
= Cov

[
1

m−1

∑m
j=1

(
NLj
Lj

)2

, 1
m

∑m
j=1

NLj
Lj2

]
− Cov

[
1

m(m−1)

(∑m
j=1

NLj
Lj

)2

, 1
m

∑m
j=1

NLj
Lj2

]
.

The �rst covariance term can be transformed into

Cov

[
1

m−1

∑m
j=1

(
NLj
Lj

)2

, 1
m

∑m
j=1

NLj
Lj2

]
=

1

m(m− 1)

m∑
j=1

m∑
i=1

Cov

[(
NLj
Lj

)2

, NLi
Li2

]

=
1

m(m− 1)

m∑
j=1

Cov

[(
NLj
Lj

)2

,
NLj
Lj2

]

=
1

m− 1
Cov

[(
N∗Lnum
L

)2

,
N∗Lnum
L2

]
=

1

m− 1

(
E
[

(N∗Lnum)3

L4

]
− E

[
(N∗Lnum)2

L2

]
E
[
N∗Lnum
L2

])
.

Again, due to the equations in Equation (A.1) at the beginning of this proof,
the �rst covariance term is

Cov

[
1

m−1

∑m
j=1

(
NLj
Lj

)2

, 1
m

∑m
j=1

NLj
Lj2

]
=

1

m− 1

(
E
[

1
L3

]
κ3[Nnum] +

(
3E
[

1
L2

]
− E

[
1
L

]2)
κ2[Nnum]κ1[Nnum]

)
=

1

m

(
E
[

1
L3

]
κ3[Nnum] +

(
3E
[

1
L2

]
− E

[
1
L

]2)
κ2[Nnum]κ1[Nnum]

)
+O

(
m−2) .

Therefore, the proof is established if it can be veri�ed that the second covariance
term satis�es

Cov

[
1

m(m−1)

(∑m
j=1

NLj
Lj

)2

, 1
m

∑m
j=1

NLj
Lj2

]
!
=

2

m
E
[

1
L2

]
κ2[Nnum]κ1[Nnum] +O

(
m−2) .
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Since the random variables (NLi, Li) and (NLj , Lj) are statistically independent
as long as i 6= j, the following transformation holds:

Cov

[
1

m(m−1)

(∑m
j=1

NLj
Lj

)2

, 1
m

∑m
j=1

NLj
Lj2

]
=

1

m2(m− 1)

∑
1≤h,i,j≤m

Cov
[
NLh
Lh

NLi
Li
,
NLj
Lj2

]
=

1

m(m− 1)

∑
1≤i,j≤m

Cov
[
NL1
L1

NLi
Li
,
NLj
Lj2

]

=
Cov

[
NL1

2

L1
2 ,

NL1
L1

2

]
+
∑m
i=2 Cov

[
NL1
L1

NLi
Li

,
NL1
L1

2

]
+
∑

2≤i,j≤m Cov

[
NL1
L1

NLi
Li

,
NLj
Lj2

]
m(m−1)

=
Cov

[
NL1

2

L1
2 ,

NL1
L1

2

]
+(m−1) E

[
NL2
L2

]
Cov

[
NL1
L1

,
NL1
L1

2

]
+E
[
NL1
L1

]
(m−1)Cov

[
NL2
L2

,
NL2
L2

2

]
m(m−1)

=
2

m
E
[
N∗Lnum
L

]
Cov

[
N∗Lnum
L

,
N∗Lnum
L2

]
+O

(
m−2)

=
2

m
E
[
N∗Lnum
L

] (
E
[

(N∗Lnum)2

L3

]
− E

[
N∗Lnum
L

]
E
[
N∗Lnum
L2

])
+O

(
m−2) .

Thus, due to the equations in Equation (A.1) at the beginning of this proof, the
second covariance term is indeed equal to 2

m
E
[

1
L2

]
κ2[Nnum]κ1[Nnum]+O

(
m−2

)
.

� calculation of Cov[V1, E1]:
The covariance of V2 and E2 is

Cov[V2, E2]

= Cov
[

1
m

∑m
j=1

NLj
2

Lj
, 1
m

∑m
j=1

NLj
Lj

]
− Cov

[
1
m

(
∑m
j=1 NLj)

2∑m
j=1 Lj

, 1
m

∑m
j=1

NLj
Lj

]
.

Since the random variables (NLi, Li) and (NLj , Lj) are statistically independent
as long as i 6= j, it holds

Cov
[

1
m

∑m
j=1

NLj
2

Lj
, 1
m

∑m
j=1

NLj
Lj

]
=

1

m2

m∑
j=1

m∑
i=1

Cov
[
NLj

2

Lj
,
NLj
Lj

]
=

1

m
Cov

[
NL1

2

L1
, NL1
L1

]
=

1

m

(
E
[

(N∗Lnum)3

L2

]
− E

[
(N∗Lnum)2

L

]
E
[
N∗Lnum
L

])
.

Again, the equations in Equation (A.1) at the beginning of this proof yield

Cov
[

1
m

∑m
j=1

NLj
2

Lj
, 1
m

∑m
j=1

NLj
Lj

]
=

1

m

(
E
[

1
L

]
κ3[Nnum] + 2κ2[Nnum]κ1[Nnum]

)
.
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According to this, the proof is established if it can be veri�ed that the second
covariance term satis�es

Cov

[
1
m

(
∑m
j=1 NLj)

2∑m
j=1 Lj

, 1
m

∑m
j=1

NLj
Lj

]
!
= 2κ2[Nnum]κ1[Nnum] +O

(
m−2) .

To verify this, �rst note that

Cov

[
1
m

(
∑m
j=1 NLj)

2∑m
j=1 Lj

, 1
m

∑m
j=1

NLj
Lj

]
=

1

m2

m∑
i=1

Cov

[
(
∑m
j=1 NLj)

2∑m
j=1 Lj

, NLi
Li

]
=

1

m
Cov

[
(
∑m
j=1 NLj)

2∑m
j=1 Lj

, NL1
L1

]
=

1

m

(
E
[
NL1
L1

(
∑m
i=1 NLi)

2∑m
i=1 Li

]
− E

[
NL1
L1

]
E
[

(
∑m
i=1 NLi)

2∑m
i=1 Li

])
.

According to Equation (A.1) at the beginning of this proof, which can also be
formulated for

∑m
j=1 NLj and

∑m
j=1 Lj instead of N∗Lnum and L respectively, the

rear expectation terms are

E
[
NL1
L1

]
E
[

(
∑m
i=1 NLi)

2∑m
i=1 Li

]
= κ2[Nnum]κ1[Nnum] +mE[L]κ1[Nnum]3 . (A.5)

For the calculation of the fore expectation term, de�ne the random variables
Km :=

∑m
i=2 Lj , K := (Lj)j∈N and Hm :=

∑m
j=2 NLj , so that

E
[
NL1
L1

(
∑m
i=1 NLi)

2∑m
i=1 Li

∣∣∣∣ (Lj)j∈N] = E
[
NL1
L1

(NL1+Hm)2

L1+Km

∣∣∣K] .
From this point, the calculation is very similar to the calculation of Var[V2] on
page 170. Similar to there, the additivity of the cumulants and the formulas
from Section 2.4.6 yield

E
[
NL1
L1

(NL1+Hm)2

L1+Km

∣∣∣K]
=

E
[
NL1

3
∣∣K ]+ 2E

[
NL1

2
∣∣K ]E[Hm|K ] + E[NL1|K ]E

[
Hm

2
∣∣K ]

L1(L1 +Km)

= 3κ2[Nnum]κ1[Nnum] + (L1 +Km)κ1[Nnum]3 +
κ3[Nnum]

L1 +Km
.

The expectation of this term is

E
[
NL1
L1

(NL1+Hm)2

L1+Km

]
= E

[
E
[
NL1
L1

(NL1+Hm)2

L1+Km

∣∣∣K]]
= 3κ2[Nnum]κ1[Nnum] +mE[L]κ1[Nnum]3 +O

(
m−1) .
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Together with Equation (A.5) from above, this yields

Cov

[
1
m

(
∑m
j=1 NLj)

2∑m
j=1 Lj

, 1
m

∑m
j=1

NLj
Lj

]
= 2κ2[Nnum]κ1[Nnum] +O

(
m−2) ,

which should be proved.
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Table B.1.: First four cumulants of
√
m
2

(
D̂2 − 1

)
under Poisson hypothesis; based on 106 replications (cf.

Section 5.2.1)

µ = 10−4 µ = 10−3 µ = 10−2

m km k̂1 k̂2 k̂3 k̂4 k̂1 k̂2 k̂3 k̂4 k̂1 k̂2 k̂3 k̂4

10 U −0.221 0.863 0.933 1.906 −0.221 0.895 0.816 1.173 −0.224 0.901 0.811 1.106
Exp −0.220 0.860 1.027 2.413 −0.222 0.890 0.817 1.209 −0.225 0.899 0.810 1.110

20 U −0.156 0.925 0.743 1.160 −0.157 0.945 0.613 0.629 −0.157 0.949 0.602 0.582
Exp −0.154 0.923 0.800 1.378 −0.159 0.945 0.622 0.655 −0.159 0.951 0.608 0.593

50 U −0.100 0.966 0.509 0.543 −0.100 0.979 0.405 0.272 −0.101 0.980 0.393 0.238
Exp −0.099 0.963 0.552 0.653 −0.100 0.979 0.416 0.295 −0.098 0.980 0.394 0.242

100 U −0.072 0.980 0.373 0.301 −0.070 0.990 0.288 0.136 −0.070 0.988 0.281 0.124
Exp −0.069 0.983 0.416 0.391 −0.069 0.990 0.300 0.161 −0.071 0.989 0.282 0.121

500 U −0.031 0.998 0.175 0.072 −0.030 0.997 0.132 0.029 −0.032 0.998 0.125 0.029
Exp −0.031 0.999 0.192 0.092 −0.032 0.997 0.130 0.027 −0.033 0.999 0.126 0.028

1000 U −0.021 1.000 0.123 0.029 −0.022 0.999 0.093 0.022 −0.021 1.000 0.091 0.008
Exp −0.021 0.999 0.142 0.054 −0.024 0.998 0.093 0.014 −0.023 0.999 0.091 0.010
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Table B.2.: Deviation of the quantiles of
√
m
2

(
D̂2 − 1

)
under Poisson hypothesis from the quantiles of the

standard normal distribution; based on 106 replications (cf. Section 5.2.1)

µ m km q∆(0.01) q∆(0.05) q∆(0.1) q∆(0.25) q∆(0.5) q∆(0.75) q∆(0.9) q∆(0.95) q∆(0.99)

10−4 10 U 0.619 0.216 0.035 −0.208 −0.375 −0.407 −0.285 −0.139 0.357
Exp 0.652 0.245 0.057 −0.199 −0.384 −0.421 −0.299 −0.139 0.409

20 U 0.452 0.144 0.010 −0.166 −0.277 −0.281 −0.176 −0.052 0.329
Exp 0.485 0.168 0.026 −0.161 −0.282 −0.288 −0.173 −0.043 0.368

50 U 0.294 0.084 −0.006 −0.118 −0.182 −0.173 −0.091 −0.003 0.247
Exp 0.327 0.101 0.005 −0.118 −0.187 −0.178 −0.094 0.000 0.282

100 U 0.215 0.055 −0.010 −0.088 −0.132 −0.123 −0.059 0.004 0.195
Exp 0.238 0.068 0.000 −0.090 −0.136 −0.122 −0.052 0.018 0.219

500 U 0.094 0.023 −0.007 −0.044 −0.060 −0.049 −0.019 0.015 0.104
Exp 0.107 0.027 −0.008 −0.044 −0.061 −0.052 −0.016 0.020 0.108

1000 U 0.066 0.014 −0.008 −0.031 −0.042 −0.034 −0.009 0.014 0.073
Exp 0.077 0.023 −0.003 −0.031 −0.043 −0.037 −0.010 0.016 0.093

10−3 10 U 0.561 0.160 −0.014 −0.235 −0.368 −0.366 −0.241 −0.105 0.296
Exp 0.563 0.164 −0.011 −0.234 −0.369 −0.370 −0.246 −0.110 0.283

20 U 0.381 0.091 −0.032 −0.182 −0.263 −0.249 −0.145 −0.043 0.239
Exp 0.384 0.091 −0.031 −0.183 −0.265 −0.253 −0.151 −0.043 0.249

50 U 0.228 0.043 −0.033 −0.124 −0.169 −0.150 −0.081 −0.011 0.180
Exp 0.233 0.046 −0.032 −0.124 −0.169 −0.154 −0.080 −0.007 0.186

100 U 0.154 0.026 −0.029 −0.091 −0.119 −0.103 −0.048 −0.002 0.128
Exp 0.161 0.030 −0.025 −0.089 −0.119 −0.103 −0.049 0.002 0.145

500 U 0.074 0.011 −0.015 −0.040 −0.052 −0.044 −0.018 0.006 0.066
Exp 0.066 0.008 −0.016 −0.042 −0.054 −0.046 −0.022 0.006 0.060

1000 U 0.043 0.006 −0.011 −0.030 −0.037 −0.032 −0.014 0.003 0.050
Exp 0.045 0.006 −0.011 −0.030 −0.041 −0.033 −0.014 0.001 0.041

10−2 10 U 0.558 0.153 −0.023 −0.244 −0.371 −0.364 −0.237 −0.097 0.285
Exp 0.556 0.151 −0.022 −0.243 −0.372 −0.368 −0.237 −0.100 0.279

20 U 0.373 0.086 −0.037 −0.184 −0.261 −0.244 −0.143 −0.040 0.237
Exp 0.370 0.082 −0.039 −0.186 −0.265 −0.246 −0.145 −0.041 0.244

50 U 0.221 0.035 −0.038 −0.124 −0.167 −0.150 −0.080 −0.010 0.170
Exp 0.224 0.041 −0.036 −0.123 −0.165 −0.146 −0.075 −0.010 0.170

100 U 0.154 0.027 −0.027 −0.089 −0.118 −0.102 −0.051 −0.004 0.121
Exp 0.152 0.022 −0.029 −0.090 −0.118 −0.103 −0.053 0.000 0.126

500 U 0.059 0.009 −0.016 −0.043 −0.053 −0.045 −0.020 0.001 0.056
Exp 0.059 0.004 −0.018 −0.044 −0.055 −0.044 −0.022 0.001 0.062

1000 U 0.048 0.005 −0.012 −0.030 −0.036 −0.029 −0.011 0.005 0.048
Exp 0.049 0.006 −0.011 −0.031 −0.038 −0.031 −0.012 0.003 0.042
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Table B.3.: Power of the test statistic
√
m
2

(
D̂2−1

)
in % under Poisson hypothesis (IOD = 1) and several

alternative hypotheses (IOD > 1) for signi�cance level 1 − α = 0.95; based on 105 replications (cf. Section
5.2.2)

IOD=1 IOD=1.25 IOD=1.5 IOD=1.75

µ m km H1− H0 H1+ H1− H0 H1+ H1− H0 H1+ H1− H0 H1+

10−4 10 U 0.05 97.30 2.65 0.03 91.52 8.45 0.01 83.58 16.41 0.01 74.75 25.24
Exp 0.04 97.29 2.67 0.01 91.40 8.59 0.01 83.77 16.23 0.01 75.83 24.17

20 U 0.64 96.48 2.88 0.14 86.71 13.16 0.05 72.08 27.87 0.02 56.88 43.10
Exp 0.51 96.56 2.93 0.12 87.01 12.87 0.05 72.70 27.25 0.02 58.33 41.66

50 U 1.34 95.80 2.87 0.11 76.37 23.52 0.01 46.48 53.51 0.00 23.66 76.34
Exp 1.17 95.86 2.98 0.09 76.79 23.12 0.01 47.59 52.40 0.00 25.61 74.39

100 U 1.74 95.39 2.88 0.03 61.89 38.08 0 20.48 79.53 0 4.65 95.35
Exp 1.60 95.48 2.92 0.04 62.06 37.90 0.00 21.85 78.15 0 5.30 94.70

500 U 2.17 95.03 2.81 0 6.91 93.09 0 0.00 100.00 0 0 100
Exp 2.16 95.03 2.81 0 7.57 92.43 0 0.01 99.99 0 0 100

1000 U 2.35 94.95 2.70 0 0.24 99.76 0 0 100 0 0 100
Exp 2.17 95.10 2.73 0 0.30 99.70 0 0 100 0 0 100

10−3 10 U 0.11 97.22 2.67 0.04 90.88 9.08 0.03 81.68 18.30 0.01 71.13 28.86
Exp 0.12 97.33 2.55 0.06 90.99 8.95 0.02 81.59 18.40 0.01 71.64 28.34

20 U 0.92 96.25 2.83 0.20 86.69 13.11 0.04 69.81 30.16 0.02 51.93 48.06
Exp 0.94 96.24 2.82 0.23 86.53 13.24 0.07 69.87 30.07 0.02 52.44 47.54

50 U 1.64 95.53 2.83 0.14 76.15 23.72 0.01 42.60 57.39 0 18.43 81.57
Exp 1.64 95.51 2.85 0.12 76.13 23.75 0.01 43.04 56.95 0.00 18.69 81.31

100 U 1.89 95.31 2.80 0.03 60.81 39.16 0.00 16.81 83.19 0 2.62 97.39
Exp 1.87 95.39 2.74 0.03 60.60 39.37 0 16.78 83.22 0 2.61 97.39

500 U 2.34 95.11 2.56 0 5.61 94.39 0 0.00 100.00 0 0 100
Exp 2.32 95.02 2.66 0 5.58 94.42 0 0.00 100.00 0 0 100

1000 U 2.39 94.94 2.67 0 0.14 99.86 0 0 100 0 0 100
Exp 2.38 94.96 2.66 0 0.17 99.84 0 0 100 0 0 100

10−2 10 U 0.13 97.19 2.68 0.05 90.96 8.99 0.02 81.35 18.63 0.02 70.72 29.27
Exp 0.13 97.10 2.78 0.03 90.97 8.99 0.01 81.32 18.67 0.01 70.78 29.22

20 U 0.96 96.26 2.79 0.23 86.44 13.33 0.07 69.66 30.28 0.02 51.19 48.79
Exp 0.99 96.24 2.77 0.24 86.45 13.31 0.05 69.47 30.48 0.02 51.30 48.68

50 U 1.71 95.57 2.71 0.13 76.26 23.61 0.01 42.06 57.93 0.00 17.70 82.30
Exp 1.68 95.57 2.75 0.13 76.10 23.78 0.01 42.13 57.86 0.00 17.98 82.02

100 U 1.92 95.34 2.74 0.04 60.52 39.4 0.00 16.30 83.70 0 2.29 97.71
Exp 1.95 95.29 2.76 0.03 60.93 39.04 0 16.29 83.71 0 2.33 97.67

500 U 2.29 95.06 2.65 0 5.49 94.52 0 0.00 100.00 0 0 100
Exp 2.24 95.12 2.64 0 5.53 94.47 0 0 100 0 0 100

1000 U 2.41 95.01 2.58 0 0.13 99.87 0 0 100 0 0 100
Exp 2.41 94.89 2.70 0 0.14 99.86 0 0 100 0 0 100
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Table B.4.: Power of the test statistic
√
m
2

(
D̂2 − 1

)
in % under several alternative hypotheses (IOD > 1)

for signi�cance level 1− α = 0.95; based on 105 replications (cf. Section 5.2.2)

IOD=2 IOD=2.5 IOD=3 IOD=5

µ m km H1− H0 H1+ H1− H0 H1+ H1− H0 H1+ H1− H0 H1+

10−4 10 U 0.00 66.27 33.73 0.00 52.56 47.44 0 42.21 57.79 0 22.21 77.79
Exp 0.00 67.72 32.28 0.00 54.77 45.23 0 44.64 55.37 0 25.45 74.55

20 U 0.00 43.71 56.29 0 26.03 73.97 0.00 15.68 84.32 0 3.60 96.40
Exp 0.01 45.78 54.21 0.00 28.18 71.82 0 17.90 82.10 0 4.79 95.21

50 U 0 11.19 88.81 0 2.45 97.55 0 0.58 99.42 0 0.01 99.99
Exp 0 12.88 87.12 0 3.18 96.82 0 0.89 99.11 0 0.03 99.98

100 U 0 0.79 99.22 0 0.03 99.97 0 0 100 0 0 100
Exp 0 1.18 98.82 0 0.05 99.95 0 0.01 99.99 0 0 100

500 U 0 0 100 0 0 100 0 0 100 0 0 100
Exp 0 0 100 0 0 100 0 0 100 0 0 100

1000 U 0 0 100 0 0 100 0 0 100 0 0 100
Exp 0 0 100 0 0 100 0 0 100 0 0 100

10−3 10 U 0.01 60.73 39.27 0.00 43.39 56.61 0 30.33 69.67 0 8.72 91.29
Exp 0.01 61.38 38.62 0.00 43.97 56.03 0.00 31.17 68.82 0 9.19 90.81

20 U 0.01 36.84 63.15 0.00 17.44 82.56 0 8.01 91.99 0 0.50 99.50
Exp 0.01 37.24 62.76 0.00 17.55 82.45 0 8.31 91.69 0 0.55 99.45

50 U 0 6.92 93.08 0 0.80 99.20 0 0.08 99.92 0 0.00 100.00
Exp 0 7.07 92.93 0 0.82 99.18 0 0.10 99.91 0 0.00 100.00

100 U 0 0.26 99.74 0 0.00 100.00 0 0.00 100.00 0 0 100
Exp 0 0.31 99.70 0 0.00 100.00 0 0.00 100.00 0 0 100

500 U 0 0 100 0 0 100 0 0 100 0 0 100
Exp 0 0 100 0 0 100 0 0 100 0 0 100

1000 U 0 0 100 0 0 100 0 0 100 0 0 100
Exp 0 0 100 0 0 100 0 0 100 0 0 100

10−2 10 U 0.01 59.61 40.38 0.00 41.65 58.35 0.00 28.97 71.03 0 7.27 92.73
Exp 0.01 59.93 40.07 0 41.55 58.45 0 28.76 71.24 0 7.41 92.59

20 U 0.01 35.54 64.45 0.00 15.90 84.10 0 6.98 93.02 0 0.35 99.65
Exp 0.01 35.88 64.11 0.00 16.32 83.68 0 7.05 92.95 0 0.35 99.65

50 U 0.00 6.41 93.59 0 0.66 99.34 0 0.07 99.93 0 0 100
Exp 0 6.37 93.63 0 0.67 99.33 0 0.07 99.93 0 0 100

100 U 0 0.24 99.76 0 0.01 100.00 0 0 100 0 0 100
Exp 0 0.23 99.77 0 0.00 100.00 0 0 100 0 0 100

500 U 0 0 100 0 0 100 0 0 100 0 0 100
Exp 0 0 100 0 0 100 0 0 100 0 0 100

1000 U 0 0 100 0 0 100 0 0 100 0 0 100
Exp 0 0 100 0 0 100 0 0 100 0 0 100
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Table B.5.: Power of the test statistic
√
m
2

(
D̂2 − 1

)
in % under several alternative hypotheses (IOD < 1)

for signi�cance level 1− α = 0.95; based on 105 replications (cf. Section 5.2.2)

IOD=0.25 IOD=0.5 IOD=0.75 IOD=0.9

r m km H1− H0 H1+ H1− H0 H1+ H1− H0 H1+ H1− H0 H1+

1 10 U 17.54 82.46 0 1.58 98.41 0.00 0.34 99.41 0.25 0.17 98.62 1.21
NBin 17.15 82.85 0 1.61 98.38 0.01 0.35 99.38 0.27 0.17 98.61 1.22

20 U 93.02 6.98 0 26.11 73.89 0 4.06 95.83 0.11 1.43 97.53 1.04
NBin 92.29 7.71 0 25.83 74.17 0 3.83 96.09 0.09 1.32 97.64 1.04

50 U 100 0 0 88.67 11.33 0 18.08 81.91 0.01 4.04 95.39 0.57
NBin 100 0 0 88.87 11.13 0 17.99 82.00 0.01 4.10 95.34 0.56

100 U 100 0 0 99.90 0.10 0 43.69 56.31 0.00 7.58 92.12 0.30
NBin 100 0 0 99.90 0.10 0 43.51 56.49 0 7.74 91.98 0.28

500 U 100 0 0 100 0 0 99.63 0.37 0 35.27 64.71 0.01
NBin 100 0 0 100 0 0 99.69 0.32 0 35.11 64.88 0.01

1000 U 100 0 0 100 0 0 100.00 0.00 0 63.68 36.32 0.00
NBin 100 0 0 100 0 0 100 0 0 63.65 36.35 0

10 10 U 16.09 83.91 0 1.79 98.21 0.00 0.39 99.30 0.31 0.21 98.51 1.29
NBin 15.86 84.14 0 1.77 98.23 0.00 0.42 99.28 0.31 0.20 98.46 1.35

20 U 95.16 4.84 0 28.89 71.11 0 4.91 94.99 0.10 1.82 97.15 1.03
NBin 95.01 4.99 0 28.80 71.20 0 4.85 95.02 0.13 1.82 97.14 1.05

50 U 100 0 0 88.08 11.92 0 19.77 80.21 0.01 4.69 94.70 0.61
NBin 100.00 0.00 0 88.15 11.85 0 19.89 80.10 0.01 4.72 94.67 0.62

100 U 100 0 0 99.81 0.19 0 44.14 55.87 0 8.22 91.49 0.29
NBin 100 0 0 99.80 0.20 0 44.18 55.81 0.00 8.55 91.13 0.33

500 U 100 0 0 100 0 0 99.52 0.48 0 35.62 64.37 0.01
NBin 100 0 0 100 0 0 99.52 0.48 0 35.87 64.13 0.01

1000 U 100 0 0 100 0 0 100 0 0 63.04 36.96 0
NBin 100 0 0 100 0 0 100 0 0 63.43 36.57 0.00

100 10 U 15.98 84.02 0 1.84 98.16 0.00 0.38 99.34 0.28 0.21 98.46 1.33
NBin 16.07 83.94 0 1.79 98.21 0.00 0.41 99.31 0.28 0.19 98.51 1.30

20 U 95.34 4.66 0 29.36 70.64 0 5.00 94.89 0.11 1.88 97.07 1.05
NBin 95.30 4.71 0 28.94 71.06 0.00 4.98 94.90 0.12 1.86 97.05 1.09

50 U 100 0 0 87.98 12.02 0 19.74 80.25 0.02 4.85 94.56 0.59
NBin 100 0 0 88.00 12.00 0 20.12 79.87 0.02 4.91 94.49 0.60

100 U 100 0 0 99.80 0.20 0 44.52 55.48 0.00 8.38 91.28 0.34
NBin 100 0 0 99.81 0.19 0 44.29 55.71 0.00 8.58 91.15 0.28

500 U 100 0 0 100 0 0 99.55 0.45 0 35.55 64.44 0.01
NBin 100 0 0 100 0 0 99.50 0.50 0 35.80 64.19 0.01

1000 U 100 0 0 100 0 0 100.00 0.00 0 63.30 36.70 0.00
NBin 100 0 0 100 0 0 100.00 0.00 0 63.21 36.79 0.00
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Table B.6.: Relative mean, relative standard deviation, and relative square root of inverse Fisher information
of %̂m; based on 105 replications (cf. Section 5.3.2)

µ = 10−4 µ = 10−3 µ = 10−2

% m km
mean(%̂m)

%
std(%̂m)

%
1

%
√
I%

mean(%̂m)
%

std(%̂m)
%

1
%
√
I%

mean(%̂m)
%

std(%̂m)
%

1
%
√
I%

10−5 10 U � � 0.625 � � 0.459 1.328 0.733 0.442
Exp � � 0.840 � � 0.513 1.297 0.688 0.410

20 U � � 0.462 1.142 0.412 0.327 1.123 0.364 0.295
Exp � � 0.489 1.190 0.498 0.380 1.140 0.403 0.327

50 U 1.094 0.344 0.292 1.052 0.229 0.211 1.045 0.206 0.191
Exp 1.114 0.388 0.317 1.062 0.253 0.229 1.047 0.210 0.196

100 U 1.045 0.227 0.211 1.026 0.161 0.155 1.022 0.140 0.135
Exp 1.055 0.248 0.226 1.030 0.175 0.167 1.025 0.148 0.141

500 U 1.009 0.096 0.095 1.005 0.069 0.068 1.004 0.060 0.060
Exp 1.010 0.102 0.100 1.006 0.074 0.073 1.005 0.064 0.064

1000 U 1.004 0.067 0.066 1.002 0.049 0.048 1.002 0.043 0.043
Exp 1.005 0.070 0.069 1.003 0.051 0.051 1.002 0.045 0.045

10−4 10 U � � 1.060 � � 0.511 1.403 0.898 0.426
Exp � � 1.060 � � 0.506 1.359 0.789 0.430

20 U � � 0.689 1.218 0.558 0.351 1.160 0.402 0.301
Exp � � 0.744 1.219 0.556 0.359 1.157 0.405 0.300

50 U � � 0.473 1.075 0.257 0.222 1.056 0.214 0.193
Exp � � 0.480 1.079 0.270 0.232 1.055 0.211 0.190

100 U � � 0.315 1.035 0.167 0.156 1.028 0.143 0.135
Exp � � 0.336 1.035 0.170 0.158 1.027 0.142 0.134

500 U 1.024 0.152 0.142 1.007 0.071 0.070 1.005 0.061 0.060
Exp 1.026 0.160 0.149 1.007 0.072 0.071 1.005 0.061 0.061

1000 U 1.012 0.103 0.101 1.003 0.049 0.049 1.003 0.043 0.043
Exp 1.013 0.108 0.105 1.003 0.051 0.050 1.003 0.043 0.043

10−3 10 U � � 5.219 � � 0.901 � � 0.490
Exp � � 5.093 � � 0.915 � � 0.488

20 U � � 3.603 � � 0.640 1.214 0.546 0.346
Exp � � 3.690 � � 0.647 1.218 0.541 0.345

50 U � � 2.267 � � 0.405 1.076 0.255 0.219
Exp � � 2.266 � � 0.407 1.074 0.252 0.218

100 U � � 1.611 � � 0.287 1.036 0.167 0.155
Exp � � 1.613 � � 0.288 1.035 0.166 0.154

500 U � � 0.718 1.021 0.136 0.128 1.007 0.070 0.069
Exp � � 0.725 1.022 0.138 0.129 1.007 0.070 0.069

1000 U � � 0.507 1.010 0.093 0.091 1.003 0.049 0.049
Exp � � 0.512 1.010 0.093 0.091 1.003 0.049 0.049

10−2 10 U � � 45.255 � � 4.933 � � 0.896
Exp � � 45.382 � � 4.932 � � 0.897

20 U � � 32.062 � � 3.485 � � 0.633
Exp � � 32.086 � � 3.488 � � 0.634

50 U � � 20.264 � � 2.207 � � 0.401
Exp � � 20.302 � � 2.209 � � 0.401

100 U � � 14.334 � � 1.561 1.128 0.504 0.283
Exp � � 14.364 � � 1.564 1.127 0.494 0.283

500 U � � 6.413 � � 0.698 1.021 0.133 0.127
Exp � � 6.425 � � 0.699 1.021 0.134 0.127

1000 U � � 4.535 � � 0.494 1.010 0.092 0.090
Exp � � 4.541 � � 0.494 1.010 0.092 0.090
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Table B.7.: First four cumulants of
√
I% (%̂m − %) =

√
Inum(%, µ)11 (%̂m − %); based on 105 replications

(cf. Section 5.3.2)

µ = 10−4 µ = 10−3 µ = 10−2

% m km k̂1 k̂2 k̂3 k̂4 k̂1 k̂2 k̂3 k̂4 k̂1 k̂2 k̂3 k̂4

10−5 10 U � � � � � � � � 0.741 2.751 11.405 106.812
Exp � � � � � � � � 0.723 2.813 14.097 202.149

20 U � � � � 0.434 1.586 2.658 9.475 0.415 1.519 2.300 7.033
Exp � � � � 0.500 1.717 3.521 19.023 0.436 1.522 2.219 6.421

50 U 0.323 1.388 2.152 14.906 0.248 1.183 0.917 1.442 0.238 1.157 0.780 1.022
Exp 0.361 1.493 2.408 9.607 0.271 1.214 1.044 1.764 0.239 1.157 0.808 1.093

100 U 0.216 1.163 0.866 1.324 0.169 1.084 0.518 0.483 0.164 1.079 0.500 0.457
Exp 0.242 1.202 1.014 1.711 0.182 1.099 0.589 0.593 0.178 1.090 0.535 0.477

500 U 0.098 1.029 0.297 0.135 0.073 1.017 0.201 0.066 0.072 1.013 0.194 0.057
Exp 0.104 1.041 0.320 0.164 0.080 1.018 0.233 0.102 0.077 1.010 0.200 0.063

1000 U 0.066 1.014 0.205 0.094 0.051 1.013 0.144 0.029 0.051 1.018 0.135 0.046
Exp 0.070 1.102 0.220 0.074 0.055 1.006 0.155 0.050 0.054 1.010 0.154 0.058

10−4 10 U � � � � � � � � 0.946 4.435 47.182 1443.991
Exp � � � � � � � � 0.833 3.365 20.116 293.276

20 U � � � � 0.621 2.523 17.892 625.802 0.533 1.794 3.851 16.772
Exp � � � � 0.608 2.399 10.359 123.958 0.523 1.826 4.343 24.766

50 U � � � � 0.339 1.339 1.642 4.213 0.292 1.231 1.148 2.126
Exp � � � � 0.340 1.351 1.680 4.420 0.291 1.238 1.146 2.107

100 U � � � � 0.223 1.146 0.827 1.213 0.209 1.115 0.680 0.769
Exp � � � � 0.223 1.155 0.850 1.248 0.203 1.115 0.671 0.788

500 U 0.167 1.143 0.893 1.412 0.099 1.027 0.295 0.142 0.084 1.015 0.259 0.147
Exp 0.173 1.146 0.949 1.643 0.101 1.025 0.280 0.149 0.089 1.015 0.236 0.092

1000 U 0.121 1.059 0.539 0.543 0.065 1.007 0.192 0.044 0.064 1.003 0.194 0.066
Exp 0.121 1.159 0.553 0.631 0.068 1.021 0.205 0.098 0.060 1.012 0.181 0.043

10−3 10 U � � � � � � � � � � � �
Exp � � � � � � � � � � � �

20 U � � � � � � � � 0.617 2.490 26.674 2012.840
Exp � � � � � � � � 0.634 2.461 11.407 150.599

50 U � � � � � � � � 0.348 1.358 1.704 4.218
Exp � � � � � � � � 0.339 1.332 1.630 4.021

100 U � � � � � � � � 0.233 1.161 0.881 1.313
Exp � � � � � � � � 0.230 1.154 0.869 1.325

500 U � � � � 0.162 1.124 0.841 1.350 0.107 1.033 0.318 0.180
Exp � � � � 0.168 1.139 0.878 1.508 0.101 1.030 0.308 0.224

1000 U � � � � 0.116 1.060 0.525 0.532 0.071 1.022 0.224 0.090
Exp � � � � 0.109 1.048 0.490 0.455 0.071 1.011 0.224 0.091

10−2 10 U � � � � � � � � � � � �
Exp � � � � � � � � � � � �

20 U � � � � � � � � � � � �
Exp � � � � � � � � � � � �

50 U � � � � � � � � � � � �
Exp � � � � � � � � � � � �

100 U � � � � � � � � 0.453 3.172 125.359 15525.493
Exp � � � � � � � � 0.449 3.036 181.658 39801.888

500 U � � � � � � � � 0.164 1.110 0.806 1.268
Exp � � � � � � � � 0.165 1.122 0.809 1.202

1000 U � � � � � � � � 0.110 1.053 0.495 0.445
Exp � � � � � � � � 0.113 1.060 0.506 0.463



182 B. Tables

Table B.8.: Deviation of the quantiles of
√
I% (%̂m − %) =

√
Inum(%, µ)11 (%̂m − %

)
from the quantiles

of the standard normal distribution; based on 105 replications (cf. Section 5.3.2)

µ = 10−2

% m km q∆(0.01) q∆(0.05) q∆(0.1) q∆(0.25) q∆(0.5) q∆(0.75) q∆(0.9) q∆(0.95) q∆(0.99)

10−5 10 U 0.946 0.610 0.473 0.333 0.363 0.689 1.406 2.122 4.323
Exp 1.047 0.683 0.526 0.345 0.314 0.569 1.174 1.830 3.935

20 U 0.730 0.460 0.348 0.229 0.216 0.367 0.726 1.038 2.014
Exp 0.581 0.345 0.257 0.195 0.260 0.516 0.975 1.384 2.468

50 U 0.510 0.320 0.230 0.155 0.133 0.207 0.370 0.522 0.918
Exp 0.478 0.294 0.216 0.140 0.134 0.228 0.409 0.578 0.995

100 U 0.384 0.243 0.179 0.107 0.087 0.141 0.243 0.337 0.595
Exp 0.324 0.187 0.135 0.088 0.105 0.191 0.346 0.472 0.788

500 U 0.201 0.115 0.084 0.051 0.044 0.060 0.093 0.141 0.225
Exp 0.067 0.025 0.015 0.019 0.048 0.109 0.193 0.258 0.417

1000 U 0.121 0.075 0.051 0.036 0.027 0.039 0.076 0.109 0.161
Exp 0.036 0.022 0.011 0.005 0.028 0.075 0.138 0.194 0.316

10−4 10 U 1.098 0.716 0.554 0.387 0.415 0.843 1.816 2.870 6.197
Exp 1.021 0.658 0.505 0.356 0.386 0.770 1.626 2.501 5.281

20 U 0.871 0.561 0.427 0.285 0.272 0.482 0.93 1.384 2.688
Exp 0.866 0.547 0.421 0.274 0.256 0.461 0.915 1.369 2.699

50 U 0.624 0.385 0.295 0.180 0.151 0.249 0.457 0.658 1.207
Exp 0.641 0.395 0.299 0.188 0.154 0.234 0.447 0.638 1.153

100 U 0.493 0.301 0.226 0.138 0.113 0.176 0.322 0.446 0.798
Exp 0.474 0.299 0.225 0.141 0.105 0.162 0.300 0.420 0.789

500 U 0.240 0.144 0.109 0.059 0.041 0.066 0.118 0.159 0.303
Exp 0.234 0.142 0.106 0.063 0.052 0.075 0.116 0.169 0.280

1000 U 0.193 0.120 0.089 0.046 0.031 0.045 0.088 0.120 0.209
Exp 0.174 0.105 0.073 0.038 0.029 0.048 0.086 0.121 0.218

10−3 10 U 1.168 0.748 0.577 0.390 0.438 0.957 2.292 3.807 10.923
Exp 1.182 0.762 0.584 0.403 0.453 1.002 2.350 4.009 11.562

20 U 0.967 0.610 0.460 0.292 0.276 0.532 1.129 1.724 3.680
Exp 0.969 0.608 0.461 0.297 0.285 0.549 1.153 1.763 3.806

50 U 0.711 0.437 0.332 0.198 0.171 0.298 0.579 0.842 1.607
Exp 0.721 0.447 0.331 0.198 0.166 0.283 0.553 0.808 1.545

100 U 0.548 0.329 0.245 0.146 0.116 0.195 0.369 0.525 0.979
Exp 0.542 0.331 0.243 0.143 0.116 0.189 0.352 0.508 0.922

500 U 0.290 0.176 0.131 0.072 0.055 0.084 0.155 0.226 0.357
Exp 0.273 0.167 0.120 0.073 0.056 0.076 0.134 0.199 0.375

1000 U 0.201 0.112 0.085 0.050 0.034 0.054 0.105 0.149 0.263
Exp 0.212 0.132 0.098 0.050 0.033 0.053 0.098 0.138 0.251

10−2 10 U 1.544 0.995 0.739 0.430 0.545 4.463 ∞ ∞ ∞
Exp 1.538 0.992 0.737 0.426 0.547 4.332 ∞ ∞ ∞

20 U 1.346 0.846 0.619 0.337 0.313 1.188 6.562 136.20 ∞
Exp 1.343 0.845 0.615 0.332 0.308 1.187 6.658 115.21 ∞

50 U 1.085 0.658 0.470 0.243 0.180 0.502 1.496 2.823 11.113
Exp 1.076 0.655 0.469 0.239 0.178 0.511 1.537 2.905 10.617

100 U 0.875 0.524 0.371 0.186 0.125 0.303 0.805 1.360 3.297
Exp 0.882 0.524 0.373 0.184 0.123 0.310 0.821 1.382 3.289

500 U 0.512 0.285 0.198 0.099 0.057 0.112 0.258 0.399 0.836
Exp 0.489 0.277 0.193 0.093 0.055 0.119 0.281 0.420 0.842

1000 U 0.368 0.208 0.144 0.064 0.034 0.071 0.176 0.272 0.521
Exp 0.371 0.205 0.142 0.066 0.037 0.077 0.178 0.285 0.538
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Table B.9.: Relative mean, relative standard deviation, and relative square root of inverse Fisher information
of µ̂m; based on 105 replications (cf. Section 5.4)

µ = 10−4 µ = 10−3 µ = 10−2

% m km
mean(µ̂m)

µ
std(µ̂m)

µ
1

µ
√
Iµ

mean(µ̂m)
µ

std(µ̂m)
µ

1
µ
√
Iµ

mean(µ̂m)
µ

std(µ̂m)
µ

1
µ
√
Iµ

10−5 10 U 0.998 0.583 0.585 1.000 0.571 0.571 0.999 0.633 0.634
Exp 1.001 0.827 0.826 1.000 0.712 0.711 0.998 0.420 0.421

20 U 1.004 0.458 0.455 1.002 0.412 0.412 0.999 0.429 0.430
Exp 1.000 0.463 0.464 1.001 0.406 0.405 1.000 0.456 0.456

50 U 0.999 0.289 0.290 0.998 0.268 0.268 1.000 0.288 0.287
Exp 0.999 0.305 0.307 1.000 0.262 0.263 1.001 0.267 0.267

100 U 0.998 0.207 0.208 1.000 0.206 0.206 0.999 0.196 0.196
Exp 0.999 0.205 0.204 1.000 0.205 0.206 1.001 0.186 0.186

500 U 1.001 0.093 0.093 1.000 0.089 0.089 1.000 0.088 0.087
Exp 1.000 0.095 0.095 1.000 0.091 0.091 1.000 0.088 0.088

1000 U 1.000 0.065 0.065 1.000 0.063 0.063 1.000 0.063 0.063
Exp 1.000 0.063 0.064 1.000 0.061 0.061 1.000 0.060 0.060

10−4 10 U 1.000 0.314 0.313 0.999 0.260 0.260 1.001 0.190 0.190
Exp 1.000 0.277 0.276 1.001 0.198 0.198 1.000 0.216 0.216

20 U 1.000 0.178 0.178 0.999 0.141 0.141 1.000 0.136 0.136
Exp 1.000 0.195 0.194 1.000 0.140 0.141 1.001 0.125 0.125

50 U 1.000 0.138 0.138 1.000 0.096 0.096 1.000 0.092 0.092
Exp 1.000 0.145 0.145 1.000 0.101 0.101 1.000 0.092 0.091

100 U 1.000 0.085 0.086 1.000 0.065 0.065 1.000 0.064 0.064
Exp 1.000 0.086 0.086 1.000 0.067 0.067 1.000 0.067 0.067

500 U 1.000 0.039 0.039 1.000 0.030 0.030 1.000 0.028 0.028
Exp 1.000 0.040 0.040 1.000 0.030 0.030 1.000 0.028 0.029

1000 U 1.000 0.028 0.028 1.000 0.020 0.020 1.000 0.020 0.020
Exp 1.000 0.028 0.028 1.000 0.020 0.020 1.000 0.020 0.020

10−3 10 U 1.000 0.230 0.231 1.000 0.087 0.087 1.000 0.059 0.059
Exp 0.999 0.213 0.212 1.000 0.100 0.100 1.000 0.067 0.067

20 U 1.001 0.156 0.156 1.000 0.062 0.062 1.000 0.045 0.045
Exp 0.999 0.171 0.171 1.000 0.062 0.062 1.000 0.048 0.048

50 U 1.000 0.095 0.094 1.000 0.039 0.039 1.000 0.030 0.030
Exp 1.000 0.087 0.087 1.000 0.042 0.042 1.000 0.029 0.029

100 U 1.000 0.068 0.068 1.000 0.027 0.027 1.000 0.021 0.021
Exp 1.000 0.064 0.064 1.000 0.025 0.025 1.000 0.021 0.021

500 U 1.000 0.029 0.029 1.000 0.012 0.012 1.000 0.009 0.009
Exp 1.000 0.030 0.029 1.000 0.012 0.012 1.000 0.009 0.009

1000 U 1.000 0.020 0.020 1.000 0.009 0.009 1.000 0.007 0.007
Exp 1.000 0.021 0.021 1.000 0.009 0.009 1.000 0.006 0.006

10−2 10 U 1.000 0.184 0.185 1.000 0.066 0.066 1.000 0.026 0.026
Exp 0.999 0.201 0.201 1.000 0.071 0.071 1.000 0.032 0.032

20 U 0.999 0.136 0.135 1.000 0.042 0.042 1.000 0.021 0.021
Exp 1.000 0.144 0.144 1.000 0.038 0.038 1.000 0.021 0.021

50 U 1.000 0.081 0.081 1.000 0.030 0.030 1.000 0.013 0.013
Exp 1.000 0.078 0.078 1.000 0.026 0.026 1.000 0.012 0.012

100 U 1.000 0.062 0.062 1.000 0.020 0.020 1.000 0.008 0.008
Exp 1.000 0.059 0.059 1.000 0.021 0.020 1.000 0.009 0.009

500 U 1.000 0.028 0.028 1.000 0.009 0.009 1.000 0.004 0.004
Exp 1.000 0.029 0.029 1.000 0.009 0.009 1.000 0.004 0.004

1000 U 1.000 0.020 0.020 1.000 0.007 0.007 1.000 0.003 0.003
Exp 1.000 0.020 0.020 1.000 0.007 0.007 1.000 0.003 0.003

∞ 10 U 1.000 0.231 0.232 1.000 0.056 0.056 1.000 0.020 0.020
Exp 1.001 0.223 0.224 1.000 0.086 0.086 1.000 0.018 0.018

20 U 1.000 0.143 0.143 1.000 0.043 0.043 1.000 0.013 0.013
Exp 1.000 0.128 0.128 1.000 0.043 0.043 1.000 0.012 0.012

50 U 1.000 0.089 0.088 1.000 0.029 0.029 1.000 0.009 0.009
Exp 1.000 0.096 0.096 1.000 0.028 0.027 1.000 0.009 0.009

100 U 1.000 0.067 0.066 1.000 0.018 0.018 1.000 0.006 0.006
Exp 1.000 0.066 0.066 1.000 0.019 0.019 1.000 0.006 0.006

500 U 1.000 0.027 0.027 1.000 0.009 0.009 1.000 0.003 0.003
Exp 1.000 0.027 0.027 1.000 0.008 0.008 1.000 0.003 0.003

1000 U 1.000 0.019 0.020 1.000 0.006 0.006 1.000 0.002 0.002
Exp 1.000 0.020 0.020 1.000 0.006 0.006 1.000 0.002 0.002
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Table B.10.: First four cumulants of
√
Iµ (µ̂m−µ) =

√
Inum(%, µ)22 (µ̂m−µ); based on 105 replications

(cf. Section 5.4)

µ = 10−4 µ = 10−3 µ = 10−2

% m km k̂1 k̂2 k̂3 k̂4 k̂1 k̂2 k̂3 k̂4 k̂1 k̂2 k̂3 k̂4

10−5 10 U −0.004 0.994 1.108 1.829 −0.001 1.002 1.144 1.998 −0.001 0.998 1.272 2.504
Exp 0.001 1.002 1.592 3.865 0.000 1.003 1.415 2.919 −0.005 0.994 0.816 0.971

20 U 0.008 1.012 0.867 1.044 0.005 1.004 0.813 0.967 −0.002 0.994 0.857 1.156
Exp −0.001 0.997 0.876 1.113 0.003 1.006 0.811 0.981 0.000 1.000 0.902 1.173

50 U −0.005 0.997 0.557 0.467 −0.007 0.998 0.534 0.400 −0.001 1.006 0.594 0.538
Exp −0.003 0.992 0.581 0.530 −0.002 0.994 0.505 0.373 0.004 1.004 0.541 0.445

100 U −0.008 0.993 0.389 0.226 −0.001 0.992 0.411 0.286 −0.003 0.996 0.390 0.222
Exp −0.003 1.009 0.411 0.264 0.001 0.993 0.404 0.279 0.003 0.997 0.375 0.201

500 U 0.013 0.999 0.181 0.077 0.003 1.001 0.176 0.046 −0.001 1.008 0.173 0.028
Exp −0.004 0.999 0.187 0.063 −0.001 0.998 0.191 0.045 −0.001 1.001 0.176 0.034

1000 U −0.002 1.004 0.126 0.048 0.001 0.999 0.129 0.040 0.001 0.998 0.120 0.019
Exp 0.005 0.998 0.129 0.025 −0.006 0.991 0.112 0.034 0.000 1.006 0.113 0.038

10−4 10 U 0.001 1.004 0.488 0.367 −0.005 1.005 0.512 0.385 0.005 1.002 0.369 0.195
Exp −0.001 1.002 0.413 0.263 0.004 1.003 0.369 0.174 0.002 1.004 0.443 0.292

20 U 0.001 0.998 0.256 0.095 −0.005 0.997 0.265 0.088 0.000 1.006 0.275 0.108
Exp −0.001 1.006 0.304 0.143 0.000 0.995 0.258 0.075 0.005 1.005 0.247 0.118

50 U 0.004 1.009 0.205 0.055 0.002 1.004 0.200 0.068 0.005 1.005 0.197 0.061
Exp −0.002 0.998 0.209 0.061 0.000 1.004 0.200 0.038 0.001 1.001 0.189 0.033

100 U 0.000 0.997 0.125 0.012 0.004 1.003 0.118 0.020 0.000 1.003 0.142 0.027
Exp 0.002 0.997 0.118 0.004 −0.001 1.003 0.124 0.046 −0.004 0.996 0.133 0.034

500 U −0.003 1.002 0.062 −0.012 0.001 1.002 0.074 −0.010 −0.004 0.999 0.065 0.021
Exp 0.000 0.995 0.054 0.015 0.002 1.004 0.065 0.003 −0.002 0.993 0.058 0.009

1000 U 0.003 1.001 0.035 0.011 −0.002 1.000 0.034 0.023 0.001 0.995 0.049 0.025
Exp 0.001 0.995 0.044 0.015 0.006 1.001 0.033 −0.007 −0.003 0.998 0.038 −0.017

10−3 10 U 0.000 0.993 0.251 0.063 −0.001 1.000 0.130 0.016 0.002 0.998 0.123 0.033
Exp −0.003 1.002 0.251 0.072 −0.001 1.000 0.142 0.004 0.004 1.001 0.134 0.015

20 U 0.003 1.004 0.178 0.021 0.002 0.995 0.094 −0.005 0.002 1.004 0.101 0.022
Exp −0.007 1.000 0.188 0.051 0.001 1.000 0.081 0.017 −0.002 0.998 0.087 0.003

50 U 0.001 1.009 0.104 0.016 0.001 0.995 0.062 0.001 −0.001 1.003 0.056 −0.001
Exp 0.004 1.002 0.086 0.028 0.000 1.000 0.060 0.005 0.003 1.006 0.047 −0.012

100 U 0.001 1.009 0.071 0.003 0.006 0.994 0.034 0.014 −0.004 1.003 0.027 0.013
Exp 0.004 1.002 0.076 0.015 0.002 1.001 0.041 0.014 −0.001 1.011 0.035 −0.009

500 U −0.006 0.995 0.023 0.020 −0.002 0.996 0.013 −0.013 −0.003 0.993 0.011 0.013
Exp −0.002 1.009 0.029 −0.004 0.003 1.002 0.007 −0.004 −0.003 1.003 0.018 0.001

1000 U −0.002 0.999 0.013 0.002 −0.008 1.005 0.023 −0.010 0.003 0.995 0.018 0.003
Exp 0.002 1.004 0.027 0.008 0.002 1.010 0.019 −0.006 0.000 0.999 0.013 0.001

10−2 10 U 0.003 0.999 0.190 0.024 0.002 0.999 0.073 −0.001 −0.001 0.998 0.046 −0.004
Exp −0.004 0.992 0.202 0.064 −0.002 0.994 0.072 0.010 0.003 1.005 0.053 −0.001

20 U −0.007 1.003 0.145 0.020 −0.003 0.992 0.050 0.006 −0.002 1.005 0.048 −0.002
Exp 0.001 1.002 0.150 0.048 0.002 1.011 0.025 0.015 −0.003 1.013 0.035 0.007

50 U 0.002 1.004 0.079 0.017 −0.004 1.001 0.035 0.001 −0.003 0.999 0.011 −0.003
Exp 0.000 0.998 0.091 0.025 −0.005 0.994 0.014 0.007 0.002 1.006 0.015 0.008

100 U −0.004 0.998 0.062 0.003 0.001 0.998 0.015 −0.020 0.000 0.999 0.016 0.015
Exp −0.002 0.998 0.058 −0.007 0.003 1.003 0.022 0.010 −0.003 1.002 0.021 0.006

500 U 0.003 0.997 0.036 −0.015 −0.004 1.003 0.016 0.004 −0.004 1.004 0.011 0.026
Exp −0.003 1.000 0.025 −0.013 −0.001 0.995 0.018 −0.006 0.003 0.998 0.017 −0.019

1000 U 0.001 0.995 0.008 0.038 −0.002 0.996 −0.001 0.006 −0.006 0.998 −0.002 −0.019
Exp 0.004 1.003 0.010 0.004 0.000 1.000 0.002 −0.014 −0.003 0.999 0.008 −0.009

∞ 10 U 0.000 0.997 0.241 0.058 −0.005 1.002 0.043 −0.003 −0.003 0.999 0.025 −0.006
Exp 0.006 0.991 0.213 0.025 −0.002 0.998 0.076 0.007 0.001 1.005 0.022 0.009

20 U 0.001 1.001 0.139 0.041 0.001 1.006 0.042 0.019 −0.001 1.006 0.006 −0.002
Exp 0.001 1.009 0.128 0.029 −0.007 0.994 0.035 0.022 −0.002 0.999 0.012 0.005

50 U 0.003 1.005 0.066 −0.011 −0.004 1.000 0.033 −0.012 −0.001 1.002 0.023 −0.006
Exp −0.003 0.995 0.089 −0.003 0.000 1.005 0.020 −0.021 −0.005 0.994 −0.005 0.004

100 U 0.000 1.004 0.077 0.013 0.004 1.004 0.016 0.012 −0.001 0.993 0.011 −0.001
Exp −0.004 1.001 0.061 0.014 0.001 0.999 0.020 0.041 0.007 0.995 0.017 0.019

500 U −0.002 0.995 0.023 −0.033 −0.002 1.010 0.011 0.000 −0.005 0.999 −0.005 0.012
Exp −0.004 0.998 0.025 0.014 0.000 1.008 0.006 −0.013 −0.003 1.006 0.009 −0.007

1000 U 0.003 0.988 0.010 −0.018 −0.002 1.000 0.008 −0.002 −0.005 0.997 0.006 0.023
Exp −0.001 0.997 0.029 −0.008 0.001 0.991 0.015 −0.010 0.004 0.997 0.011 −0.007
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Table B.11.: Mean, standard deviation, and square root of inverse Fisher information of ξ̂m in the counting-
model; based on 105 replications (cf. Section 5.5.2)(

sj0, . . . , sj4

)
=
(
0, 4, 8, 12,∞

)
β = 1 β = 3 β = 5

ξ µ m km mean(ξ̂m) std(ξ̂m)
√
Jξ mean(ξ̂m) std(ξ̂m)

√
Jξ mean(ξ̂m) std(ξ̂m)

√
Jξ

0.5 10−4 20 U � � 0.405 � � 0.352 0.570 0.508 0.473
Exp � � 0.488 0.546 0.430 0.379 0.587 0.566 0.507

50 U 0.515 0.285 0.248 0.514 0.256 0.245 0.518 0.294 0.286
Exp � � 0.260 0.512 0.242 0.231 0.518 0.308 0.300

100 U 0.506 0.190 0.179 0.506 0.173 0.169 0.506 0.205 0.202
Exp 0.508 0.208 0.194 0.506 0.167 0.163 0.507 0.207 0.203

10−3 20 U 0.503 0.125 0.122 0.503 0.123 0.122 0.503 0.156 0.154
Exp 0.503 0.129 0.125 0.503 0.116 0.115 0.504 0.152 0.150

50 U 0.501 0.079 0.078 0.501 0.073 0.073 0.501 0.087 0.086
Exp 0.501 0.075 0.075 0.501 0.075 0.075 0.502 0.101 0.101

100 U 0.501 0.056 0.056 0.500 0.052 0.052 0.501 0.063 0.063
Exp 0.501 0.056 0.055 0.501 0.055 0.055 0.501 0.068 0.068

1 10−4 20 U � � 0.569 � � 0.601 � � 0.726
Exp � � 0.562 � � 0.651 1.099 0.787 0.666

50 U 1.050 0.408 0.356 1.030 0.366 0.345 1.033 0.461 0.434
Exp 1.052 0.440 0.377 1.026 0.355 0.337 1.032 0.440 0.415

100 U 1.019 0.260 0.247 1.014 0.253 0.247 1.016 0.302 0.294
Exp 1.021 0.264 0.251 1.013 0.243 0.238 1.017 0.326 0.316

10−3 20 U 1.010 0.170 0.165 1.007 0.180 0.178 1.008 0.228 0.225
Exp 1.008 0.163 0.159 1.006 0.169 0.167 1.010 0.241 0.236

50 U 1.005 0.121 0.119 1.002 0.118 0.117 1.003 0.128 0.128
Exp 1.004 0.111 0.110 1.002 0.104 0.103 1.002 0.124 0.124

100 U 1.002 0.078 0.077 1.002 0.079 0.078 1.002 0.095 0.094
Exp 1.002 0.075 0.075 1.001 0.080 0.080 1.001 0.090 0.090

(
sj0, . . . , sj6

)
=
(
0, 2.4, 4.8, 7.2, 9.6, 12,∞

)
β = 1 β = 3 β = 5

ξ µ m km mean(ξ̂m) std(ξ̂m)
√
Jξ mean(ξ̂m) std(ξ̂m)

√
Jξ mean(ξ̂m) std(ξ̂m)

√
Jξ

0.5 10−4 20 U � � 0.326 0.516 0.362 0.341 0.527 0.396 0.389
Exp � � 0.278 0.512 0.306 0.292 0.525 0.381 0.374

50 U 0.499 0.212 0.199 0.505 0.235 0.227 0.506 0.258 0.255
Exp 0.497 0.210 0.198 0.503 0.222 0.215 0.505 0.232 0.229

100 U 0.499 0.142 0.137 0.503 0.157 0.155 0.503 0.180 0.178
Exp 0.500 0.144 0.140 0.501 0.157 0.155 0.503 0.204 0.201

10−3 20 U 0.499 0.087 0.087 0.501 0.111 0.110 0.502 0.155 0.153
Exp 0.499 0.085 0.084 0.501 0.116 0.115 0.501 0.116 0.115

50 U 0.500 0.063 0.063 0.500 0.064 0.064 0.500 0.083 0.083
Exp 0.500 0.059 0.059 0.500 0.064 0.064 0.501 0.082 0.081

100 U 0.500 0.044 0.044 0.500 0.046 0.045 0.500 0.058 0.058
Exp 0.500 0.044 0.044 0.500 0.046 0.046 0.500 0.060 0.060

1 10−4 20 U 1.047 0.524 0.434 1.032 0.476 0.440 1.042 0.619 0.570
Exp � � 0.450 1.053 0.605 0.535 1.050 0.649 0.594

50 U 1.018 0.308 0.291 1.014 0.307 0.296 1.018 0.404 0.387
Exp 1.020 0.325 0.304 1.012 0.291 0.282 1.019 0.405 0.388

100 U 1.008 0.209 0.203 1.007 0.224 0.220 1.006 0.261 0.257
Exp 1.008 0.199 0.193 1.008 0.240 0.235 1.006 0.263 0.257

10−3 20 U 1.005 0.155 0.152 1.003 0.148 0.146 1.003 0.179 0.177
Exp 1.003 0.133 0.131 1.003 0.159 0.158 1.004 0.188 0.187

50 U 1.001 0.091 0.091 1.001 0.095 0.094 1.001 0.113 0.112
Exp 1.002 0.088 0.088 1.001 0.099 0.099 1.002 0.124 0.124

100 U 1.001 0.065 0.065 1.000 0.068 0.068 1.001 0.081 0.081
Exp 1.001 0.055 0.055 1.001 0.072 0.072 1.001 0.089 0.089
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Table B.12.: Mean, standard deviation, and square root of inverse Fisher information of β̂m in the counting-
model; based on 105 replications (cf. Section 5.5.2)(

sj0, . . . , sj4

)
=
(
0, 4, 8, 12,∞

)
β = 1 β = 3 β = 5

ξ µ m km mean(β̂m) std(β̂m)
√
Jβ mean(β̂m) std(β̂m)

√
Jβ mean(β̂m) std(β̂m)

√
Jβ

0.5 10−4 20 U � � 0.640 � � 1.016 5.049 1.684 1.770
Exp � � 0.771 3.051 1.083 1.096 5.037 1.797 1.901

50 U 1.035 0.391 0.392 3.030 0.712 0.708 5.043 1.078 1.072
Exp � � 0.412 3.025 0.676 0.668 5.053 1.119 1.125

100 U 1.016 0.282 0.282 3.015 0.492 0.488 5.028 0.760 0.755
Exp 1.019 0.307 0.307 3.014 0.475 0.471 5.027 0.771 0.761

10−3 20 U 1.007 0.193 0.192 3.008 0.352 0.351 5.021 0.585 0.578
Exp 1.008 0.198 0.198 3.007 0.333 0.332 5.014 0.565 0.561

50 U 1.003 0.124 0.123 3.002 0.211 0.211 5.005 0.323 0.323
Exp 1.003 0.118 0.118 3.003 0.218 0.217 5.008 0.377 0.377

100 U 1.001 0.088 0.089 3.001 0.150 0.150 5.002 0.237 0.237
Exp 1.002 0.088 0.087 3.002 0.158 0.158 5.002 0.254 0.253

1 10−4 20 U � � 0.711 � � 1.418 � � 2.257
Exp � � 0.703 � � 1.535 5.176 2.135 2.073

50 U 1.027 0.437 0.445 3.037 0.829 0.813 5.088 1.390 1.349
Exp 1.035 0.464 0.471 3.040 0.805 0.794 5.075 1.328 1.291

100 U 1.014 0.307 0.309 3.021 0.585 0.582 5.037 0.926 0.913
Exp 1.014 0.311 0.314 3.018 0.564 0.561 5.045 0.994 0.982

10−3 20 U 1.005 0.207 0.207 3.009 0.419 0.419 5.025 0.707 0.699
Exp 1.006 0.199 0.199 3.007 0.395 0.395 5.029 0.743 0.735

50 U 1.003 0.149 0.149 3.006 0.276 0.276 5.008 0.399 0.398
Exp 1.002 0.137 0.137 3.002 0.244 0.244 5.008 0.386 0.386

100 U 1.001 0.097 0.096 3.001 0.185 0.184 5.003 0.294 0.294
Exp 1.001 0.094 0.094 3.003 0.189 0.188 5.005 0.279 0.280

(
sj0, . . . , sj6

)
=
(
0, 2.4, 4.8, 7.2, 9.6, 12,∞

)
β = 1 β = 3 β = 5

ξ µ m km mean(β̂m) std(β̂m)
√
Jβ mean(β̂m) std(β̂m)

√
Jβ mean(β̂m) std(β̂m)

√
Jβ

0.5 10−4 20 U � � 0.434 3.092 0.954 0.939 5.094 1.403 1.434
Exp � � 0.370 3.062 0.820 0.805 5.086 1.356 1.379

50 U 1.022 0.269 0.265 3.047 0.641 0.627 5.065 0.947 0.938
Exp 1.025 0.269 0.264 3.045 0.606 0.593 5.051 0.855 0.845

100 U 1.011 0.185 0.183 3.019 0.430 0.426 5.031 0.663 0.656
Exp 1.010 0.187 0.186 3.020 0.432 0.428 5.041 0.752 0.742

10−3 20 U 1.004 0.116 0.116 3.009 0.304 0.303 5.025 0.570 0.563
Exp 1.004 0.112 0.112 3.012 0.319 0.319 5.015 0.427 0.424

50 U 1.002 0.083 0.083 3.003 0.176 0.176 5.007 0.308 0.307
Exp 1.002 0.079 0.078 3.004 0.176 0.176 5.006 0.300 0.300

100 U 1.001 0.059 0.059 3.002 0.126 0.125 5.003 0.213 0.213
Exp 1.001 0.058 0.058 3.002 0.126 0.126 5.003 0.219 0.220

1 10−4 20 U 1.053 0.483 0.472 3.105 1.036 0.985 5.209 1.824 1.735
Exp � � 0.490 3.149 1.283 1.198 5.215 1.908 1.807

50 U 1.020 0.319 0.317 3.047 0.681 0.663 5.105 1.223 1.179
Exp 1.023 0.334 0.331 3.041 0.646 0.631 5.093 1.218 1.180

100 U 1.011 0.223 0.222 3.026 0.500 0.493 5.048 0.793 0.782
Exp 1.009 0.212 0.210 3.028 0.534 0.526 5.044 0.796 0.783

10−3 20 U 1.005 0.166 0.166 3.012 0.330 0.327 5.021 0.544 0.538
Exp 1.005 0.143 0.143 3.012 0.356 0.355 5.024 0.574 0.560

50 U 1.003 0.099 0.099 3.004 0.212 0.212 5.008 0.342 0.342
Exp 1.002 0.096 0.096 3.005 0.222 0.221 5.008 0.377 0.376

100 U 1.001 0.070 0.070 3.003 0.152 0.151 5.004 0.248 0.247
Exp 1.001 0.060 0.060 3.002 0.161 0.161 5.006 0.271 0.270
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Table B.13.: First four cumulants of (ξ̂m−ξ)/
√
Jξ in the counting-model; based on 105 replications (cf.

Section 5.5.2) (
sj0, . . . , sj4

)
=
(
0, 4, 8, 12,∞

)
ξ = 0.5 ξ = 1

β µ m km k̂1 k̂2 k̂3 k̂4 k̂1 k̂2 k̂3 k̂4

1 10−4 20 U � � � � � � � �
Exp � � � � � � � �

50 U 0.059 1.321 2.391 27.741 0.139 1.319 2.171 14.35
Exp � � � � 0.139 1.363 2.933 39.716

100 U 0.035 1.127 0.731 1.321 0.077 1.108 0.762 1.358
Exp 0.039 1.150 0.819 1.741 0.083 1.112 0.777 1.244

10−3 20 U 0.026 1.054 0.384 0.361 0.060 1.052 0.445 0.449
Exp 0.023 1.063 0.438 0.466 0.049 1.046 0.410 0.368

50 U 0.009 1.020 0.250 0.146 0.038 1.026 0.297 0.186
Exp 0.013 1.018 0.223 0.105 0.038 1.019 0.261 0.163

100 U 0.012 1.005 0.166 0.076 0.025 1.015 0.189 0.085
Exp 0.010 1.013 0.178 0.095 0.020 1.009 0.181 0.084

3 10−4 20 U � � � � � � � �
Exp 0.120 1.281 2.446 15.378 � � � �

50 U 0.057 1.093 0.765 1.113 0.087 1.128 0.836 1.420
Exp 0.053 1.093 0.712 1.004 0.077 1.109 0.788 1.277

100 U 0.037 1.049 0.449 0.427 0.057 1.053 0.504 0.484
Exp 0.036 1.043 0.424 0.429 0.056 1.043 0.465 0.466

10−3 20 U 0.024 1.026 0.303 0.222 0.042 1.023 0.325 0.205
Exp 0.026 1.022 0.280 0.134 0.039 1.024 0.317 0.180

50 U 0.014 1.003 0.171 0.052 0.018 1.021 0.214 0.109
Exp 0.013 1.004 0.171 0.056 0.023 1.015 0.194 0.081

100 U 0.009 1.003 0.117 0.016 0.024 1.013 0.148 0.058
Exp 0.010 1.003 0.122 0.028 0.012 1.009 0.151 0.032

5 10−4 20 U 0.148 1.156 1.890 6.330 � � � �
Exp 0.171 1.244 2.878 21.389 0.148 1.393 3.364 42.124

50 U 0.062 1.059 0.665 0.730 0.075 1.130 0.839 1.433
Exp 0.059 1.051 0.732 0.860 0.076 1.121 0.792 1.338

100 U 0.032 1.037 0.398 0.350 0.055 1.059 0.466 0.504
Exp 0.037 1.043 0.396 0.308 0.053 1.064 0.494 0.504

10−3 20 U 0.018 1.024 0.280 0.176 0.037 1.027 0.324 0.232
Exp 0.029 1.024 0.263 0.152 0.041 1.042 0.371 0.279

50 U 0.014 1.005 0.144 0.040 0.021 1.005 0.180 0.062
Exp 0.015 1.004 0.161 0.041 0.019 1.005 0.177 0.094

100 U 0.012 1.002 0.119 0.049 0.020 1.006 0.119 0.055
Exp 0.015 1.001 0.111 0.011 0.013 0.998 0.131 0.046
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Table B.14.: First four cumulants of (ξ̂m−ξ)/
√
Jξ in the counting-model; based on 105 replications (cf.

Section 5.5.2) (
sj0, . . . , sj6

)
=
(
0, 2.4, 4.8, 7.2, 9.6, 12,∞

)
ξ = 0.5 ξ = 1

β µ m km k̂1 k̂2 k̂3 k̂4 k̂1 k̂2 k̂3 k̂4

1 10−4 20 U � � � � 0.108 1.459 3.854 51.532
Exp � � � � � � � �

50 U −0.004 1.135 0.635 0.961 0.063 1.126 0.793 1.464
Exp −0.017 1.122 0.604 0.909 0.066 1.142 0.915 1.861

100 U −0.008 1.060 0.358 0.327 0.038 1.060 0.498 0.541
Exp −0.002 1.049 0.373 0.428 0.039 1.066 0.468 0.446

10−3 20 U −0.008 1.012 0.202 0.143 0.031 1.034 0.350 0.281
Exp −0.006 1.018 0.218 0.125 0.022 1.022 0.279 0.167

50 U 0.003 1.012 0.151 0.092 0.009 1.012 0.202 0.112
Exp 0.002 1.008 0.137 0.072 0.018 1.007 0.182 0.063

100 U −0.005 0.998 0.105 0.047 0.013 1.003 0.133 0.013
Exp 0.002 1.005 0.099 0.042 0.013 1.005 0.108 0.035

3 10−4 20 U 0.046 1.127 1.253 3.349 0.072 1.171 1.088 2.486
Exp 0.042 1.100 0.871 1.259 0.099 1.280 1.722 5.920

50 U 0.020 1.071 0.599 0.693 0.047 1.076 0.580 0.702
Exp 0.014 1.061 0.539 0.623 0.042 1.067 0.520 0.543

100 U 0.016 1.028 0.349 0.284 0.030 1.037 0.395 0.310
Exp 0.009 1.028 0.337 0.276 0.034 1.045 0.430 0.385

10−3 20 U 0.010 1.015 0.236 0.111 0.020 1.025 0.257 0.131
Exp 0.010 1.009 0.231 0.117 0.017 1.014 0.260 0.144

50 U 0.007 1.004 0.109 0.057 0.014 1.005 0.155 0.044
Exp 0.003 0.998 0.131 0.044 0.014 1.004 0.168 0.066

100 U 0.002 1.010 0.100 0.039 0.007 1.001 0.118 0.042
Exp 0.004 1.002 0.107 0.044 0.013 1.004 0.124 0.041

5 10−4 20 U 0.070 1.034 1.016 1.632 0.074 1.177 1.250 3.295
Exp 0.068 1.039 0.951 1.413 0.085 1.195 1.331 3.418

50 U 0.023 1.030 0.497 0.396 0.046 1.086 0.583 0.730
Exp 0.022 1.027 0.414 0.286 0.050 1.088 0.624 0.907

100 U 0.017 1.024 0.290 0.176 0.023 1.036 0.359 0.306
Exp 0.017 1.024 0.342 0.218 0.024 1.042 0.355 0.301

10−3 20 U 0.014 1.023 0.242 0.143 0.017 1.022 0.223 0.091
Exp 0.006 1.015 0.180 0.093 0.020 1.020 0.236 0.133

50 U 0.004 1.001 0.143 0.064 0.010 1.003 0.149 0.065
Exp 0.007 1.008 0.124 0.053 0.020 1.015 0.158 0.046

100 U 0.005 1.002 0.078 −0.007 0.008 1.002 0.109 0.056
Exp 0.003 1.002 0.101 0.028 0.011 1.003 0.101 0.020
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Table B.15.: First four cumulants of (β̂m−β)/
√
Jβ in the counting-model; based on 105 replications (cf.

Section 5.5.2) (
sj0, . . . , sj4

)
=
(
0, 4, 8, 12,∞

)
ξ = 0.5 ξ = 1

β µ m km k̂1 k̂2 k̂3 k̂4 k̂1 k̂2 k̂3 k̂4

1 10−4 20 U � � � � � � � �
Exp � � � � � � � �

50 U 0.088 0.993 0.100 −0.279 0.060 0.967 0.313 −0.043
Exp � � � � 0.074 0.971 0.351 −0.047

100 U 0.058 1.001 0.087 −0.095 0.047 0.987 0.202 −0.065
Exp 0.063 1.002 0.102 −0.135 0.046 0.985 0.216 −0.030

10−3 20 U 0.038 1.004 0.059 −0.064 0.024 0.998 0.137 −0.011
Exp 0.039 1.005 0.041 −0.052 0.028 0.996 0.140 −0.013

50 U 0.028 1.005 0.024 −0.010 0.022 1.002 0.104 0.001
Exp 0.023 0.997 0.028 −0.029 0.013 1.003 0.096 −0.006

100 U 0.016 0.994 0.026 0.008 0.012 1.004 0.062 −0.010
Exp 0.017 1.002 0.013 −0.015 0.016 1.001 0.057 −0.009

3 10−4 20 U � � � � � � � �
Exp 0.047 0.977 0.246 0.101 � � � �

50 U 0.042 1.012 0.211 0.090 0.045 1.038 0.343 0.252
Exp 0.037 1.024 0.219 0.117 0.050 1.027 0.332 0.252

100 U 0.031 1.019 0.167 0.123 0.036 1.011 0.227 0.123
Exp 0.030 1.015 0.167 0.094 0.031 1.009 0.228 0.139

10−3 20 U 0.023 1.008 0.118 0.056 0.020 1.002 0.160 0.066
Exp 0.022 1.005 0.108 0.025 0.018 1.000 0.131 0.036

50 U 0.011 1.000 0.071 0.003 0.023 0.998 0.099 0.026
Exp 0.015 1.003 0.070 0.003 0.009 0.999 0.078 0.017

100 U 0.008 1.004 0.051 0.015 0.005 1.009 0.062 0.056
Exp 0.011 1.008 0.059 0.005 0.017 1.006 0.063 −0.005

5 10−4 20 U 0.028 0.905 0.245 0.090 � � � �
Exp 0.020 0.894 0.249 0.089 0.085 1.062 0.636 0.610

50 U 0.040 1.012 0.279 0.055 0.065 1.062 0.489 0.485
Exp 0.047 0.988 0.239 0.006 0.058 1.058 0.462 0.471

100 U 0.037 1.014 0.240 0.118 0.041 1.029 0.328 0.253
Exp 0.035 1.026 0.268 0.130 0.045 1.026 0.331 0.246

10−3 20 U 0.036 1.023 0.207 0.106 0.036 1.022 0.234 0.104
Exp 0.025 1.011 0.178 0.081 0.039 1.022 0.241 0.126

50 U 0.015 0.996 0.106 0.017 0.021 1.003 0.118 0.026
Exp 0.021 0.999 0.127 0.024 0.021 1.004 0.122 0.038

100 U 0.009 1.001 0.087 0.011 0.010 1.001 0.095 −0.002
Exp 0.006 1.004 0.083 −0.002 0.017 0.993 0.080 0.013
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Table B.16.: First four cumulants of (β̂m−β)/
√
Jβ in the counting-model; based on 105 replications (cf.

Section 5.5.2) (
sj0, . . . , sj6

)
=
(
0, 2.4, 4.8, 7.2, 9.6, 12,∞

)
ξ = 0.5 ξ = 1

β µ m km k̂1 k̂2 k̂3 k̂4 k̂1 k̂2 k̂3 k̂4

1 10−4 20 U � � � � 0.112 1.043 0.536 0.474
Exp � � � � � � � �

50 U 0.084 1.037 0.142 0.004 0.063 1.017 0.316 0.146
Exp 0.095 1.037 0.158 0.009 0.071 1.017 0.332 0.167

100 U 0.062 1.022 0.097 −0.002 0.051 1.012 0.209 0.089
Exp 0.053 1.010 0.107 0.041 0.044 1.018 0.180 0.030

10−3 20 U 0.037 1.001 0.063 0.027 0.029 0.999 0.152 0.045
Exp 0.036 0.997 0.057 0.001 0.032 1.000 0.131 0.014

50 U 0.021 1.003 0.049 0.044 0.026 1.007 0.087 0.029
Exp 0.022 1.004 0.056 0.017 0.021 0.999 0.080 0.030

100 U 0.020 1.001 0.029 0.016 0.013 1.002 0.062 −0.016
Exp 0.012 0.996 0.034 −0.003 0.011 1.002 0.061 0.012

3 10−4 20 U 0.098 1.031 0.473 0.404 0.106 1.108 0.738 1.022
Exp 0.077 1.037 0.438 0.317 0.124 1.148 0.973 1.611

50 U 0.075 1.045 0.382 0.285 0.070 1.052 0.456 0.434
Exp 0.076 1.043 0.368 0.282 0.065 1.047 0.412 0.353

100 U 0.044 1.020 0.269 0.177 0.052 1.031 0.310 0.198
Exp 0.047 1.017 0.275 0.233 0.054 0.031 0.334 0.261

10−3 20 U 0.030 1.011 0.186 0.049 0.036 1.020 0.209 0.097
Exp 0.036 1.005 0.206 0.089 0.035 1.007 0.222 0.110

50 U 0.020 1.009 0.099 0.002 0.018 1.001 0.120 0.023
Exp 0.023 0.998 0.098 −0.001 0.023 1.002 0.134 0.055

100 U 0.013 1.008 0.067 −0.018 0.018 1.002 0.087 0.012
Exp 0.013 1.001 0.073 0.015 0.011 1.000 0.089 0.024

5 10−4 20 U 0.065 0.957 0.398 0.190 0.120 1.106 0.805 0.935
Exp 0.062 0.968 0.375 0.152 0.119 1.115 0.899 1.314

50 U 0.069 1.018 0.364 0.170 0.089 1.076 0.618 0.725
Exp 0.061 1.023 0.358 0.173 0.079 1.066 0.598 0.682

100 U 0.047 1.022 0.302 0.186 0.062 1.030 0.363 0.260
Exp 0.055 1.027 0.333 0.217 0.056 1.033 0.373 0.315

10−3 20 U 0.045 1.025 0.275 0.151 0.039 1.023 0.251 0.130
Exp 0.035 1.016 0.202 0.086 0.042 1.022 0.267 0.144

50 U 0.024 1.005 0.127 0.048 0.024 1.000 0.160 0.052
Exp 0.021 1.003 0.129 0.043 0.021 1.008 0.164 0.030

100 U 0.015 0.999 0.090 0.033 0.017 1.011 0.109 0.039
Exp 0.015 0.997 0.087 0.018 0.022 1.004 0.123 0.053
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Table B.17.: Mean and standard deviation of ξ̂m and the number of realizations with ξ̂m = 0 in case of
ξ = 0 in the counting-model; based on 105 replications (cf. Section 5.5.3)

ξ = 0 and
(
sj0, . . . , sj4

)
=
(
0, 4, 8, 12,∞

)
β = 1 β = 3 β = 5

µ m km mean(ξ̂m) std(ξ̂m) #{ξ̂m=0}mean(ξ̂m) std(ξ̂m) #{ξ̂m=0}mean(ξ̂m) std(ξ̂m) #{ξ̂m=0}

10−4 20 U � � 68507 0.083 0.152 58153 0.116 0.196 53532
Exp � � 65386 0.082 0.150 58060 0.115 0.195 53764

50 U � � 84750 0.046 0.074 53819 0.079 0.126 52545
Exp � � 87798 0.052 0.086 54118 0.067 0.107 52483

100 U � � 90849 0.036 0.056 52805 0.046 0.070 51588
Exp � � 90778 0.037 0.058 53240 0.053 0.082 51542

500 U 0.025 0.043 65410 0.016 0.024 51402 0.022 0.032 50461
Exp 0.025 0.042 64651 0.016 0.025 51443 0.022 0.033 50615

1000 U 0.019 0.031 55471 0.011 0.017 51143 0.015 0.022 50635
Exp 0.019 0.031 54708 0.011 0.017 50932 0.015 0.022 50422

10−3 20 U � � 83956 0.025 0.039 52268 0.034 0.051 50809
Exp � � 84074 0.022 0.034 52007 0.033 0.050 50943

50 U 0.025 0.043 64912 0.016 0.024 51195 0.021 0.031 50581
Exp 0.025 0.042 64474 0.017 0.027 51732 0.019 0.029 50678

100 U 0.020 0.032 54257 0.011 0.016 51111 0.015 0.022 50272
Exp 0.018 0.030 56212 0.011 0.017 50784 0.015 0.023 50354

500 U 0.010 0.015 53853 0.005 0.007 50208 0.007 0.010 50315
Exp 0.010 0.015 53872 0.005 0.008 50150 0.007 0.010 50184

1000 U 0.007 0.011 52777 0.004 0.005 50496 0.005 0.007 50354
Exp 0.007 0.011 52825 0.004 0.005 50754 0.005 0.007 50337

10−2 20 U 0.013 0.020 55508 0.008 0.011 50442 0.010 0.015 50337
Exp 0.016 0.025 57658 0.008 0.012 50919 0.011 0.017 50212

50 U 0.010 0.015 53995 0.005 0.008 50524 0.007 0.010 50242
Exp 0.009 0.015 53845 0.005 0.008 50452 0.006 0.009 50329

100 U 0.007 0.011 52692 0.004 0.005 50205 0.005 0.007 49953
Exp 0.007 0.011 52957 0.004 0.005 50125 0.005 0.007 50208

500 U 0.003 0.005 51092 0.002 0.002 50079 0.002 0.003 50246
Exp 0.003 0.005 51392 0.002 0.002 49906 0.002 0.003 50267

1000 U 0.002 0.004 50988 0.001 0.002 49862 0.001 0.002 50055
Exp 0.002 0.004 50960 0.001 0.002 50199 0.002 0.002 49830

ξ = 0 and
(
sj0, . . . , sj6

)
=
(
0, 2.4, 4.8, 7.2, 9.6, 12,∞

)
β = 1 β = 3 β = 5

µ m km mean(ξ̂m) std(ξ̂m) #{ξ̂m=0}mean(ξ̂m) std(ξ̂m) #{ξ̂m=0}mean(ξ̂m) std(ξ̂m) #{ξ̂m=0}

10−4 20 U � � 73469 0.068 0.120 57306 0.112 0.189 54065
Exp � � 72043 0.061 0.105 56482 0.098 0.162 53592

50 U 0.041 0.075 61901 0.040 0.065 54274 0.063 0.100 52196
Exp 0.041 0.075 61923 0.039 0.062 53825 0.065 0.103 52310

100 U 0.030 0.052 59318 0.029 0.046 53078 0.044 0.068 51970
Exp 0.030 0.051 58827 0.032 0.051 53073 0.044 0.068 51662

500 U 0.015 0.024 54591 0.014 0.021 51240 0.020 0.029 50889
Exp 0.015 0.023 54630 0.014 0.022 51308 0.020 0.031 50917

1000 U 0.011 0.017 53320 0.010 0.015 50746 0.014 0.021 50675
Exp 0.011 0.017 53191 0.010 0.015 51012 0.014 0.021 50251

10−3 20 U 0.023 0.038 56892 0.023 0.035 52368 0.033 0.049 51261
Exp 0.023 0.038 56677 0.022 0.034 52328 0.034 0.052 51242

50 U 0.016 0.025 54663 0.013 0.020 51240 0.018 0.027 50528
Exp 0.014 0.022 54483 0.013 0.019 51064 0.020 0.030 50506

100 U 0.011 0.017 53261 0.010 0.015 51030 0.014 0.021 50287
Exp 0.011 0.017 53273 0.011 0.016 51346 0.014 0.021 50801

500 U 0.005 0.008 51227 0.004 0.007 50415 0.006 0.009 50373
Exp 0.006 0.008 51210 0.004 0.007 50350 0.006 0.009 49953

1000 U 0.004 0.006 50921 0.003 0.005 50374 0.004 0.007 50086
Exp 0.004 0.006 50889 0.003 0.005 50443 0.004 0.007 50144

10−2 20 U 0.008 0.012 52448 0.007 0.010 50584 0.010 0.014 50062
Exp 0.008 0.011 52268 0.007 0.011 50818 0.011 0.017 50434

50 U 0.006 0.009 51602 0.004 0.006 50522 0.006 0.009 50402
Exp 0.005 0.008 51571 0.005 0.008 50564 0.006 0.010 50134

100 U 0.004 0.005 50952 0.003 0.005 50356 0.005 0.007 50360
Exp 0.004 0.005 51134 0.003 0.005 50324 0.004 0.006 49966

500 U 0.002 0.003 50568 0.001 0.002 50077 0.002 0.003 50056
Exp 0.002 0.002 50301 0.001 0.002 50080 0.002 0.003 50063

1000 U 0.001 0.002 50138 0.001 0.001 50301 0.001 0.002 50219
Exp 0.001 0.002 50482 0.001 0.001 50084 0.001 0.002 49985
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Table B.18.: Mean and standard deviation of β̂m in case of ξ = 0 in the counting-model; based on 105

replications (cf. Section 5.5.3)

ξ = 0 and
(
sj0, . . . , sj4

)
=
(
0, 4, 8, 12,∞

)
β = 1 β = 3 β = 5

µ m km mean(β̂m) std(β̂m) mean(β̂m) std(β̂m) mean(β̂m) std(β̂m)

10−4 20 U � � 2.760 0.593 4.613 0.950
Exp � � 2.764 0.587 4.611 0.942

50 U � � 2.861 0.335 4.717 0.677
Exp � � 2.841 0.375 4.756 0.584

100 U � � 2.890 0.260 4.828 0.402
Exp � � 2.886 0.268 4.803 0.461

500 U 0.947 0.098 2.949 0.118 4.915 0.196
Exp 0.948 0.096 2.948 0.120 4.914 0.198

1000 U 0.961 0.072 2.965 0.082 4.941 0.136
Exp 0.961 0.072 2.963 0.084 4.941 0.135

10−3 20 U � � 2.921 0.184 4.869 0.300
Exp � � 2.931 0.162 4.872 0.298

50 U 0.948 0.096 2.949 0.116 4.917 0.188
Exp 0.948 0.096 2.945 0.129 4.924 0.176

100 U 0.959 0.076 2.965 0.081 4.940 0.136
Exp 0.963 0.069 2.965 0.082 4.939 0.139

500 U 0.980 0.034 2.984 0.036 4.974 0.061
Exp 0.980 0.034 2.984 0.038 4.972 0.063

1000 U 0.985 0.025 2.989 0.026 4.981 0.044
Exp 0.985 0.025 2.989 0.026 4.981 0.044

10−2 20 U 0.973 0.046 2.975 0.056 4.960 0.091
Exp 0.967 0.058 2.974 0.061 4.955 0.102

50 U 0.980 0.034 2.983 0.039 4.973 0.062
Exp 0.980 0.034 2.984 0.038 4.976 0.054

100 U 0.985 0.024 2.989 0.026 4.981 0.043
Exp 0.985 0.025 2.988 0.026 4.980 0.046

500 U 0.993 0.012 2.995 0.011 4.991 0.019
Exp 0.993 0.012 2.995 0.012 4.991 0.020

1000 U 0.995 0.008 2.996 0.008 4.994 0.014
Exp 0.995 0.008 2.996 0.008 4.994 0.014

ξ = 0 and
(
sj0, . . . , sj6

)
=
(
0, 2.4, 4.8, 7.2, 9.6, 12,∞

)
β = 1 β = 3 β = 5

µ m km mean(β̂m) std(β̂m) mean(β̂m) std(β̂m) mean(β̂m) std(β̂m)

10−4 20 U � � 2.821 0.515 4.649 0.960
Exp � � 2.834 0.462 4.686 0.849

50 U 0.939 0.152 2.888 0.304 4.781 0.561
Exp 0.938 0.151 2.894 0.290 4.777 0.579

100 U 0.954 0.107 2.917 0.221 4.842 0.402
Exp 0.956 0.104 2.909 0.241 4.842 0.398

500 U 0.977 0.049 2.960 0.105 4.926 0.182
Exp 0.978 0.048 2.958 0.108 4.923 0.188

1000 U 0.984 0.035 2.971 0.074 4.947 0.129
Exp 0.984 0.036 2.971 0.075 4.946 0.130

10−3 20 U 0.966 0.077 2.935 0.170 4.879 0.297
Exp 0.966 0.078 2.938 0.166 4.874 0.311

50 U 0.977 0.052 2.961 0.101 4.931 0.168
Exp 0.979 0.046 2.963 0.096 4.924 0.187

100 U 0.984 0.034 2.971 0.075 4.945 0.131
Exp 0.984 0.035 2.969 0.080 4.946 0.132

500 U 0.992 0.016 2.987 0.033 4.976 0.059
Exp 0.992 0.016 2.987 0.033 4.976 0.058

1000 U 0.995 0.011 2.991 0.024 4.983 0.041
Exp 0.994 0.011 2.991 0.023 4.983 0.042

10−2 20 U 0.989 0.024 2.981 0.050 4.964 0.088
Exp 0.989 0.023 2.979 0.054 4.957 0.104

50 U 0.992 0.017 2.987 0.032 4.976 0.058
Exp 0.992 0.016 2.984 0.041 4.975 0.060

100 U 0.995 0.011 2.991 0.024 4.982 0.043
Exp 0.995 0.011 2.991 0.023 4.984 0.038

500 U 0.997 0.005 2.996 0.011 4.992 0.018
Exp 0.998 0.005 2.996 0.010 4.992 0.019

1000 U 0.998 0.004 2.997 0.007 4.995 0.013
Exp 0.998 0.004 2.997 0.007 4.995 0.013
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Table B.19.: Quantiles of ξ̂m in case of ξ = 0 and the inverse of Φξ ; based on 105 replications (cf. Section
5.5.3)

ξ = 0 and
(
sj0, . . . , sj4

)
=
(
0, 4, 8, 12,∞

)
p = 0.5 p = 0.75 p = 0.9 p = 0.95 p = 0.99

β µ m p-Q(ξ̂m) Φ
−1
ξ

(p) p-Q(ξ̂m) Φ
−1
ξ

(p) p-Q(ξ̂m) Φ
−1
ξ

(p) p-Q(ξ̂m) Φ
−1
ξ

(p) p-Q(ξ̂m) Φ
−1
ξ

(p)

1 10−4 20 0 0 0 0.273 0 0.519 0 0.666 0.821 0.942
50 0 0 0 0.204 0 0.387 0 0.497 0.503 0.703

100 0 0 0 0.139 0 0.263 0.208 0.338 0.393 0.478
500 0 0 0.044 0.062 0.089 0.118 0.121 0.151 0.175 0.214

10−3 20 0 0 0 0.098 0.127 0.186 0.185 0.238 0.284 0.337
50 0 0 0.044 0.061 0.088 0.116 0.116 0.149 0.176 0.211

100 0 0 0.030 0.046 0.070 0.087 0.092 0.112 0.134 0.159
500 0 0 0.016 0.019 0.032 0.036 0.042 0.046 0.058 0.065

10−2 20 0 0 0.021 0.027 0.044 0.051 0.057 0.066 0.080 0.093
50 0 0 0.016 0.019 0.032 0.036 0.041 0.046 0.058 0.065

100 0 0 0.012 0.013 0.023 0.025 0.030 0.032 0.042 0.046
500 0 0 0.006 0.006 0.011 0.012 0.014 0.015 0.020 0.021

3 10−4 20 0 0 0.115 0.141 0.283 0.268 0.397 0.343 0.672 0.486
50 0 0 0.072 0.078 0.152 0.149 0.204 0.191 0.315 0.271

100 0 0 0.057 0.061 0.117 0.116 0.155 0.149 0.233 0.210
500 0 0 0.026 0.027 0.052 0.052 0.069 0.067 0.099 0.094

10−3 20 0 0 0.041 0.043 0.083 0.082 0.109 0.105 0.159 0.148
50 0 0 0.026 0.027 0.052 0.051 0.067 0.066 0.098 0.093

100 0 0 0.018 0.019 0.036 0.036 0.047 0.046 0.066 0.065
500 0 0 0.008 0.008 0.016 0.016 0.021 0.021 0.030 0.029

10−2 20 0 0 0.013 0.013 0.025 0.025 0.032 0.032 0.046 0.045
50 0 0 0.009 0.009 0.017 0.017 0.022 0.022 0.032 0.031

100 0 0 0.006 0.006 0.011 0.011 0.015 0.015 0.021 0.021
500 0 0 0.003 0.003 0.005 0.005 0.006 0.006 0.009 0.009

5 10−4 20 0 0 0.173 0.182 0.381 0.345 0.526 0.443 0.848 0.626
50 0 0 0.123 0.129 0.258 0.245 0.348 0.314 0.535 0.444

100 0 0 0.075 0.076 0.149 0.144 0.196 0.184 0.293 0.261
500 0 0 0.036 0.036 0.070 0.069 0.091 0.089 0.131 0.125

10−3 20 0 0 0.056 0.056 0.110 0.107 0.143 0.137 0.210 0.193
50 0 0 0.034 0.035 0.067 0.066 0.087 0.085 0.126 0.120

100 0 0 0.025 0.025 0.048 0.048 0.062 0.062 0.089 0.087
500 0 0 0.011 0.011 0.021 0.021 0.028 0.027 0.039 0.039

10−2 20 0 0 0.017 0.017 0.032 0.032 0.041 0.041 0.059 0.058
50 0 0 0.011 0.011 0.022 0.022 0.028 0.028 0.040 0.040

100 0.000 0 0.008 0.008 0.015 0.015 0.019 0.019 0.027 0.027
500 0 0 0.004 0.004 0.007 0.007 0.009 0.009 0.012 0.012
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Table B.20.: Quantiles of ξ̂m in case of ξ = 0 and the inverse of Φξ ; based on 105 replications (cf. Section
5.5.3)

ξ = 0 and
(
sj0, . . . , sj6

)
=
(
0, 2.4, 4.8, 7.2, 9.6, 12,∞

)
p = 0.5 p = 0.75 p = 0.9 p = 0.95 p = 0.99

β µ m p-Q(ξ̂m) Φ
−1
ξ

(p) p-Q(ξ̂m) Φ
−1
ξ

(p) p-Q(ξ̂m) Φ
−1
ξ

(p) p-Q(ξ̂m) Φ
−1
ξ

(p) p-Q(ξ̂m) Φ
−1
ξ

(p)

1 10−4 20 0 0 0.006 0.154 0.222 0.292 0.323 0.375 0.527 0.531
50 0 0 0.057 0.095 0.148 0.180 0.204 0.231 0.323 0.327

100 0 0 0.046 0.067 0.108 0.127 0.145 0.163 0.218 0.230
500 0 0 0.025 0.030 0.052 0.057 0.068 0.073 0.098 0.104

10−3 20 0 0 0.036 0.047 0.079 0.090 0.105 0.116 0.156 0.163
50 0 0 0.026 0.032 0.054 0.060 0.071 0.077 0.103 0.109

100 0 0 0.018 0.020 0.036 0.039 0.047 0.050 0.067 0.070
500 0 0 0.009 0.009 0.017 0.018 0.022 0.023 0.031 0.032

10−2 20 0 0 0.013 0.014 0.026 0.027 0.033 0.035 0.047 0.049
50 0 0 0.010 0.010 0.019 0.020 0.024 0.025 0.034 0.035

100 0 0 0.006 0.006 0.012 0.012 0.015 0.015 0.021 0.021
500 0 0 0.003 0.003 0.006 0.006 0.007 0.007 0.010 0.010

3 10−4 20 0 0 0.100 0.123 0.236 0.234 0.325 0.301 0.518 0.425
50 0 0 0.063 0.071 0.134 0.136 0.180 0.174 0.272 0.246

100 0 0 0.047 0.052 0.097 0.098 0.129 0.126 0.189 0.179
500 0 0 0.023 0.024 0.046 0.046 0.060 0.059 0.086 0.084

10−3 20 0 0 0.037 0.040 0.075 0.076 0.098 0.097 0.144 0.137
50 0 0 0.022 0.023 0.044 0.044 0.057 0.057 0.082 0.081

100 0 0 0.017 0.017 0.032 0.032 0.042 0.042 0.060 0.059
500 0 0 0.008 0.008 0.015 0.015 0.019 0.019 0.027 0.026

10−2 20 0 0 0.011 0.011 0.022 0.022 0.028 0.028 0.040 0.039
50 0 0 0.007 0.007 0.014 0.014 0.018 0.018 0.026 0.025

100 0 0 0.005 0.005 0.010 0.010 0.013 0.013 0.019 0.019
500 0 0 0.002 0.002 0.005 0.005 0.006 0.006 0.008 0.008

5 10−4 20 0 0 0.167 0.185 0.373 0.352 0.515 0.451 0.819 0.638
50 0 0 0.101 0.106 0.208 0.201 0.277 0.258 0.417 0.365

100 0 0 0.071 0.075 0.145 0.143 0.191 0.183 0.282 0.259
500 0 0 0.033 0.033 0.064 0.063 0.083 0.081 0.119 0.115

10−3 20 0 0 0.054 0.055 0.106 0.105 0.138 0.134 0.201 0.190
50 0 0 0.031 0.031 0.060 0.059 0.077 0.076 0.110 0.107

100 0 0 0.024 0.024 0.046 0.046 0.059 0.059 0.086 0.083
500 0 0 0.011 0.011 0.020 0.020 0.026 0.026 0.037 0.037

10−2 20 0 0 0.016 0.016 0.031 0.031 0.040 0.039 0.057 0.055
50 0 0 0.010 0.011 0.020 0.020 0.026 0.026 0.036 0.036

100 0 0 0.008 0.008 0.015 0.015 0.019 0.019 0.027 0.027
500 0 0 0.003 0.003 0.006 0.006 0.008 0.008 0.011 0.012
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Table B.21.: Lower quantiles of β̂m in case of ξ = 0 and inverse of Φβ ; based on 105 replications (cf.
Section 5.5.3)

ξ = 0 and
(
sj0, . . . , sj4

)
=
(
0, 4, 8, 12,∞

)
p = 0.01 p = 0.05 p = 0.1 p = 0.25 p = 0.5

β µ m p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p)

1 10−4 20 0.200 −1.021 0.910 −0.429 0.924 −0.113 0.948 0.409 0.998 0.799
50 0.294 −0.510 0.813 −0.067 0.827 0.168 0.851 0.558 0.983 0.850

100 0.335 −0.026 0.702 0.274 0.764 0.435 0.890 0.700 0.968 0.898
500 0.634 0.541 0.745 0.676 0.809 0.747 0.908 0.866 0.969 0.954

10−3 20 0.481 0.277 0.654 0.489 0.777 0.602 0.897 0.788 0.971 0.928
50 0.637 0.547 0.751 0.680 0.813 0.750 0.908 0.867 0.969 0.955

100 0.719 0.660 0.807 0.759 0.853 0.813 0.925 0.900 0.974 0.966
500 0.874 0.860 0.911 0.901 0.931 0.923 0.965 0.959 0.988 0.986

10−2 20 0.828 0.801 0.879 0.859 0.906 0.890 0.952 0.942 0.985 0.980
50 0.876 0.860 0.912 0.901 0.932 0.923 0.965 0.959 0.989 0.986

100 0.910 0.901 0.936 0.930 0.950 0.946 0.974 0.971 0.992 0.990
500 0.956 0.954 0.969 0.968 0.976 0.975 0.987 0.987 0.996 0.995

3 10−4 20 1.193 1.098 1.738 1.648 2.011 1.926 2.399 2.341 2.781 2.716
50 1.970 1.940 2.277 2.246 2.429 2.402 2.656 2.633 2.880 2.842

100 2.203 2.177 2.435 2.415 2.551 2.536 2.731 2.715 2.904 2.877
500 2.634 2.630 2.741 2.737 2.794 2.791 2.877 2.872 2.957 2.945

10−3 20 2.435 2.419 2.595 2.587 2.679 2.672 2.808 2.799 2.932 2.913
50 2.641 2.635 2.746 2.741 2.797 2.794 2.878 2.874 2.957 2.946

100 2.752 2.746 2.822 2.819 2.859 2.857 2.915 2.912 2.970 2.962
500 2.886 2.886 2.920 2.919 2.937 2.935 2.962 2.960 2.987 2.983

10−2 20 2.825 2.823 2.875 2.874 2.901 2.900 2.941 2.939 2.979 2.974
50 2.879 2.877 2.913 2.913 2.931 2.931 2.959 2.958 2.986 2.982

100 2.919 2.919 2.943 2.942 2.955 2.954 2.973 2.972 2.990 2.988
500 2.965 2.965 2.975 2.975 2.980 2.980 2.988 2.988 2.996 2.995

5 10−4 20 2.255 1.902 3.010 2.798 3.407 3.253 4.015 3.929 4.625 4.539
50 3.004 2.803 3.560 3.439 3.846 3.761 4.289 4.241 4.743 4.673

100 3.791 3.710 4.126 4.083 4.305 4.273 4.578 4.554 4.848 4.808
500 4.398 4.381 4.569 4.560 4.657 4.651 4.794 4.786 4.928 4.908

10−3 20 4.075 4.044 4.345 4.320 4.479 4.461 4.683 4.669 4.887 4.858
50 4.423 4.405 4.584 4.577 4.670 4.664 4.802 4.794 4.929 4.911

100 4.582 4.570 4.699 4.694 4.762 4.757 4.857 4.851 4.950 4.936
500 4.811 4.808 4.865 4.864 4.894 4.892 4.937 4.934 4.978 4.971

10−2 20 4.718 4.715 4.800 4.798 4.842 4.839 4.905 4.902 4.967 4.958
50 4.805 4.804 4.862 4.861 4.891 4.890 4.935 4.932 4.977 4.971

100 4.867 4.866 4.905 4.905 4.925 4.924 4.955 4.954 4.984 4.980
500 4.939 4.939 4.957 4.957 4.966 4.966 4.980 4.979 4.993 4.991
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Table B.22.: Lower quantiles of β̂m in case of ξ = 0 and inverse of Φβ ; based on 105 replications (cf.
Section 5.5.3)

ξ = 0 and
(
sj0, . . . , sj6

)
=
(
0, 2.4, 4.8, 7.2, 9.6, 12,∞

)
p = 0.01 p = 0.05 p = 0.1 p = 0.25 p = 0.5

β µ m p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p)

1 10−4 20 0.320 0.127 0.576 0.382 0.634 0.515 0.788 0.713 0.929 0.879
50 0.503 0.462 0.664 0.619 0.743 0.701 0.851 0.823 0.954 0.926

100 0.647 0.621 0.759 0.732 0.813 0.790 0.893 0.875 0.966 0.948
500 0.837 0.830 0.887 0.879 0.912 0.905 0.949 0.944 0.982 0.976

10−3 20 0.744 0.731 0.824 0.810 0.865 0.851 0.922 0.912 0.974 0.963
50 0.829 0.821 0.881 0.873 0.908 0.901 0.947 0.941 0.982 0.975

100 0.889 0.885 0.922 0.918 0.938 0.936 0.964 0.962 0.988 0.984
500 0.948 0.947 0.963 0.962 0.971 0.971 0.983 0.983 0.994 0.993

10−2 20 0.922 0.919 0.945 0.943 0.957 0.955 0.975 0.973 0.991 0.989
50 0.943 0.942 0.960 0.959 0.969 0.968 0.982 0.981 0.994 0.992

100 0.965 0.965 0.975 0.975 0.981 0.980 0.989 0.988 0.996 0.995
500 0.983 0.983 0.988 0.988 0.991 0.991 0.995 0.994 0.998 0.998

3 10−4 20 1.576 1.384 1.972 1.844 2.171 2.074 2.483 2.422 2.820 2.748
50 2.134 2.063 2.375 2.330 2.498 2.464 2.692 2.665 2.896 2.854

100 2.362 2.322 2.541 2.515 2.632 2.611 2.776 2.758 2.925 2.894
500 2.693 2.681 2.780 2.772 2.825 2.818 2.894 2.886 2.964 2.950

10−3 20 2.507 2.478 2.644 2.627 2.715 2.701 2.827 2.813 2.941 2.919
50 2.707 2.693 2.788 2.780 2.830 2.824 2.897 2.890 2.965 2.952

100 2.779 2.776 2.842 2.840 2.874 2.872 2.924 2.920 2.974 2.965
500 2.900 2.900 2.929 2.928 2.944 2.943 2.966 2.964 2.989 2.984

10−2 20 2.852 2.850 2.895 2.893 2.916 2.914 2.949 2.947 2.983 2.977
50 2.904 2.903 2.931 2.931 2.945 2.945 2.967 2.965 2.989 2.985

100 2.929 2.929 2.950 2.949 2.960 2.959 2.976 2.975 2.992 2.989
500 2.969 2.968 2.977 2.977 2.982 2.982 2.989 2.989 2.996 2.995

5 10−4 20 2.427 1.877 3.091 2.773 3.445 3.224 4.020 3.900 4.634 4.523
50 3.405 3.213 3.837 3.726 4.063 3.984 4.416 4.371 4.791 4.727

100 3.835 3.733 4.154 4.096 4.320 4.279 4.586 4.554 4.855 4.806
500 4.458 4.439 4.612 4.600 4.690 4.681 4.812 4.803 4.935 4.914

10−3 20 4.129 4.070 4.367 4.337 4.494 4.471 4.691 4.673 4.892 4.858
50 4.498 4.477 4.638 4.627 4.711 4.702 4.825 4.816 4.939 4.920

100 4.603 4.595 4.716 4.711 4.774 4.770 4.864 4.857 4.953 4.938
500 4.821 4.819 4.873 4.871 4.899 4.897 4.939 4.936 4.979 4.972

10−2 20 4.736 4.729 4.810 4.807 4.849 4.846 4.908 4.904 4.968 4.959
50 4.825 4.822 4.875 4.873 4.901 4.899 4.940 4.937 4.979 4.973

100 4.870 4.869 4.908 4.906 4.926 4.925 4.956 4.954 4.985 4.980
500 4.944 4.944 4.960 4.960 4.968 4.968 4.981 4.980 4.993 4.991
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Table B.23.: Upper quantiles of β̂m in case of ξ = 0 and inverse of Φβ ; based on 105 replications (cf.
Section 5.5.3)

ξ = 0 and
(
sj0, . . . , sj4

)
=
(
0, 4, 8, 12,∞

)
p = 0.5 p = 0.75 p = 0.9 p = 0.95 p = 0.99

β µ m p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p)

1 10−4 20 0.998 0.799 1.154 1 1.270 1.188 1.335 1.286 1.468 1.458
50 0.983 0.850 1.092 1 1.185 1.140 1.239 1.213 1.335 1.342

100 0.968 0.898 1.052 1 1.115 1.095 1.154 1.145 1.222 1.232
500 0.969 0.954 1.012 1 1.046 1.043 1.066 1.065 1.105 1.104

10−3 20 0.971 0.928 1.030 1 1.079 1.067 1.106 1.102 1.158 1.164
50 0.969 0.955 1.011 1 1.046 1.042 1.065 1.064 1.104 1.103

100 0.974 0.966 1.011 1 1.038 1.032 1.052 1.048 1.077 1.077
500 0.988 0.986 1.004 1 1.015 1.013 1.021 1.020 1.032 1.032

10−2 20 0.985 0.980 1.005 1 1.021 1.018 1.030 1.028 1.045 1.045
50 0.989 0.986 1.004 1 1.015 1.013 1.021 1.020 1.032 1.032

100 0.992 0.990 1.002 1 1.010 1.009 1.015 1.014 1.022 1.022
500 0.996 0.995 1.001 1 1.005 1.004 1.007 1.006 1.010 1.010

3 10−4 20 2.781 2.716 3.153 3 3.482 3.394 3.691 3.601 4.096 3.963
50 2.880 2.842 3.086 3 3.269 3.220 3.377 3.335 3.590 3.536

100 2.904 2.877 3.067 3 3.207 3.171 3.290 3.260 3.447 3.416
500 2.957 2.945 3.030 3 3.092 3.077 3.128 3.117 3.196 3.187

10−3 20 2.932 2.913 3.046 3 3.145 3.121 3.203 3.184 3.311 3.294
50 2.957 2.946 3.028 3 3.090 3.076 3.126 3.115 3.192 3.184

100 2.970 2.962 3.020 3 3.063 3.053 3.088 3.080 3.134 3.129
500 2.987 2.983 3.009 3 3.028 3.024 3.039 3.036 3.059 3.058

10−2 20 2.979 2.974 3.014 3 3.044 3.037 3.061 3.056 3.093 3.089
50 2.986 2.982 3.010 3 3.031 3.025 3.043 3.039 3.065 3.062

100 2.990 2.988 3.006 3 3.020 3.017 3.028 3.026 3.043 3.041
500 2.996 2.995 3.003 3 3.009 3.007 3.012 3.011 3.019 3.018

5 10−4 20 4.625 4.539 5.234 5 5.771 5.637 6.141 5.970 6.859 6.555
50 4.743 4.673 5.167 5 5.554 5.452 5.779 5.688 6.250 6.103

100 4.848 4.808 5.101 5 5.321 5.265 5.452 5.404 5.705 5.648
500 4.928 4.908 5.049 5 5.153 5.127 5.215 5.194 5.331 5.311

10−3 20 4.887 4.858 5.073 5 5.235 5.197 5.331 5.300 5.510 5.480
50 4.929 4.911 5.046 5 5.147 5.123 5.206 5.187 5.317 5.299

100 4.950 4.936 5.033 5 5.105 5.089 5.147 5.135 5.224 5.216
500 4.978 4.971 5.015 5 5.047 5.039 5.066 5.060 5.100 5.096

10−2 20 4.967 4.958 5.023 5 5.071 5.059 5.098 5.089 5.150 5.143
50 4.977 4.971 5.016 5 5.048 5.040 5.067 5.061 5.102 5.098

100 4.984 4.980 5.010 5 5.033 5.028 5.046 5.042 5.070 5.067
500 4.993 4.991 5.005 5 5.015 5.013 5.021 5.019 5.032 5.031
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Table B.24.: Upper quantiles of β̂m in case of ξ = 0 and inverse of Φβ ; based on 105 replications (cf.
Section 5.5.3)

ξ = 0 and
(
sj0, . . . , sj6

)
=
(
0, 2.4, 4.8, 7.2, 9.6, 12,∞

)
p = 0.5 p = 0.75 p = 0.9 p = 0.95 p = 0.99

β µ m p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p) p-Q(β̂m) Φ
−1
β

(p)

1 10−4 20 0.929 0.879 1.066 1 1.196 1.153 1.265 1.232 1.401 1.372
50 0.954 0.926 1.039 1 1.118 1.094 1.162 1.143 1.245 1.229

100 0.966 0.948 1.028 1 1.081 1.066 1.112 1.101 1.169 1.162
500 0.982 0.976 1.011 1 1.036 1.030 1.050 1.045 1.075 1.073

10−3 20 0.974 0.963 1.019 1 1.057 1.047 1.079 1.072 1.119 1.115
50 0.982 0.975 1.012 1 1.038 1.031 1.052 1.048 1.080 1.076

100 0.988 0.984 1.008 1 1.024 1.020 1.034 1.031 1.051 1.049
500 0.994 0.993 1.003 1 1.011 1.009 1.015 1.014 1.023 1.023

10−2 20 0.991 0.989 1.005 1 1.017 1.014 1.023 1.021 1.036 1.034
50 0.994 0.992 1.004 1 1.012 1.010 1.017 1.015 1.026 1.025

100 0.996 0.995 1.002 1 1.007 1.006 1.010 1.009 1.015 1.015
500 0.998 0.998 1.001 1 1.003 1.003 1.005 1.005 1.007 1.007

3 10−4 20 2.820 2.748 3.160 3 3.462 3.371 3.658 3.564 4.047 3.904
50 2.896 2.854 3.093 3 3.269 3.215 3.374 3.327 3.579 3.524

100 2.925 2.894 3.066 3 3.192 3.156 3.267 3.237 3.410 3.380
500 2.964 2.950 3.031 3 3.089 3.073 3.124 3.111 3.189 3.178

10−3 20 2.941 2.919 3.051 3 3.147 3.120 3.204 3.182 3.314 3.292
50 2.965 2.952 3.030 3 3.086 3.070 3.120 3.107 3.184 3.172

100 2.974 2.965 3.022 3 3.063 3.051 3.087 3.078 3.132 3.125
500 2.989 2.984 3.010 3 3.028 3.023 3.039 3.035 3.059 3.056

10−2 20 2.983 2.977 3.015 3 3.042 3.034 3.058 3.052 3.087 3.084
50 2.989 2.985 3.009 3 3.027 3.022 3.037 3.034 3.057 3.054

100 2.992 2.989 3.007 3 3.020 3.016 3.028 3.025 3.041 3.040
500 2.996 2.995 3.003 3 3.009 3.007 3.012 3.011 3.019 3.018

5 10−4 20 4.634 4.523 5.260 5 5.860 5.682 6.251 6.039 7.016 6.664
50 4.791 4.727 5.154 5 5.485 5.390 5.683 5.594 6.073 5.953

100 4.855 4.806 5.113 5 5.341 5.277 5.480 5.421 5.746 5.675
500 4.935 4.914 5.050 5 5.149 5.122 5.209 5.186 5.322 5.299

10−3 20 4.892 4.858 5.081 5 5.245 5.203 5.344 5.309 5.536 5.496
50 4.939 4.920 5.046 5 5.139 5.114 5.194 5.174 5.297 5.279

100 4.953 4.938 5.035 5 5.106 5.088 5.149 5.135 5.224 5.216
500 4.979 4.972 5.016 5 5.048 5.040 5.066 5.060 5.101 5.097

10−2 20 4.968 4.959 5.024 5 5.072 5.059 5.100 5.090 5.153 5.145
50 4.979 4.973 5.016 5 5.047 5.039 5.065 5.059 5.099 5.095

100 4.985 4.980 5.012 5 5.035 5.029 5.048 5.044 5.073 5.070
500 4.993 4.991 5.005 5 5.015 5.012 5.021 5.019 5.031 5.030
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Table B.25.: Mean and standard deviation of ξ̂m in the counting-maximum model; based on 104 replications
(cf. Section 5.6.2) (

sj0, . . . , sj4

)
=
(
0, 4, 8, 12,∞

)
β = 1 β = 3 β = 5

ξ µ m km mean(ξ̂m) std(ξ̂m) mean(ξ̂m) std(ξ̂m) mean(ξ̂m) std(ξ̂m)

0 10−4 20 U 0.039 0.075 0.043 0.083 0.042 0.078
Exp 0.039 0.079 0.045 0.083 0.041 0.079

50 U 0.031 0.055 0.027 0.047 0.032 0.054
Exp 0.030 0.053 0.032 0.054 0.029 0.048

100 U 0.023 0.038 0.022 0.036 0.020 0.033
Exp 0.023 0.039 0.023 0.038 0.023 0.038

10−3 20 U 0.023 0.040 0.017 0.028 0.017 0.026
Exp 0.024 0.042 0.016 0.024 0.017 0.027

50 U 0.016 0.026 0.012 0.018 0.011 0.017
Exp 0.016 0.026 0.013 0.020 0.010 0.015

100 U 0.012 0.020 0.008 0.012 0.008 0.012
Exp 0.012 0.019 0.008 0.013 0.008 0.012

0.5 10−4 20 U 0.436 0.257 0.456 0.226 0.458 0.237
Exp 0.410 0.296 0.452 0.245 0.450 0.258

50 U 0.472 0.158 0.479 0.156 0.483 0.143
Exp 0.473 0.169 0.481 0.145 0.482 0.150

100 U 0.486 0.113 0.490 0.105 0.493 0.099
Exp 0.484 0.122 0.491 0.102 0.492 0.101

10−3 20 U 0.494 0.098 0.498 0.082 0.497 0.082
Exp 0.494 0.104 0.498 0.077 0.497 0.080

50 U 0.499 0.064 0.498 0.048 0.499 0.046
Exp 0.497 0.061 0.500 0.050 0.497 0.053

100 U 0.499 0.046 0.499 0.034 0.500 0.034
Exp 0.499 0.045 0.500 0.036 0.501 0.036

1 10−4 20 U 0.933 0.349 0.951 0.343 0.951 0.338
Exp 0.936 0.347 0.944 0.372 0.963 0.316

50 U 0.977 0.215 0.982 0.193 0.984 0.198
Exp 0.973 0.228 0.990 0.190 0.986 0.192

100 U 0.988 0.148 0.992 0.137 0.992 0.133
Exp 0.988 0.153 0.994 0.132 0.988 0.144

10−3 20 U 0.998 0.121 0.999 0.109 0.998 0.116
Exp 0.999 0.118 1.000 0.107 0.999 0.124

50 U 0.999 0.086 1.000 0.072 0.999 0.066
Exp 0.999 0.081 1.000 0.064 1.000 0.065

100 U 1.000 0.056 1.000 0.048 1.000 0.049
Exp 1.000 0.055 1.000 0.050 0.999 0.048
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Table B.26.: Mean and standard deviation of ξ̂m in the counting-maximum model; based on 104 replications
(cf. Section 5.6.2) (

sj0, . . . , sj6

)
=
(
0, 2.4, 4.8, 7.2, 9.6, 12,∞

)
β = 1 β = 3 β = 5

ξ µ m km mean(ξ̂m) std(ξ̂m) mean(ξ̂m) std(ξ̂m) mean(ξ̂m) std(ξ̂m)

0 10−4 20 U 0.043 0.086 0.042 0.079 0.044 0.084
Exp 0.043 0.086 0.040 0.072 0.041 0.075

50 U 0.030 0.053 0.027 0.045 0.028 0.048
Exp 0.030 0.053 0.026 0.044 0.030 0.051

100 U 0.023 0.039 0.021 0.034 0.021 0.034
Exp 0.023 0.038 0.022 0.036 0.021 0.033

10−3 20 U 0.022 0.035 0.017 0.027 0.017 0.026
Exp 0.021 0.035 0.016 0.026 0.017 0.028

50 U 0.015 0.024 0.010 0.016 0.010 0.015
Exp 0.014 0.021 0.010 0.015 0.011 0.017

100 U 0.010 0.016 0.008 0.012 0.008 0.012
Exp 0.010 0.016 0.008 0.013 0.008 0.012

0.5 10−4 20 U 0.441 0.258 0.459 0.241 0.465 0.210
Exp 0.452 0.234 0.468 0.207 0.471 0.204

50 U 0.478 0.160 0.480 0.156 0.485 0.136
Exp 0.477 0.162 0.480 0.147 0.489 0.122

100 U 0.489 0.109 0.491 0.106 0.493 0.093
Exp 0.488 0.113 0.491 0.104 0.489 0.105

10−3 20 U 0.496 0.079 0.497 0.078 0.497 0.083
Exp 0.496 0.076 0.496 0.082 0.499 0.068

50 U 0.498 0.055 0.499 0.045 0.499 0.047
Exp 0.498 0.053 0.499 0.045 0.500 0.047

100 U 0.499 0.039 0.500 0.032 0.499 0.033
Exp 0.499 0.039 0.499 0.032 0.500 0.034

1 10−4 20 U 0.947 0.322 0.970 0.278 0.968 0.286
Exp 0.949 0.341 0.953 0.340 0.963 0.305

50 U 0.976 0.213 0.988 0.182 0.985 0.192
Exp 0.978 0.221 0.991 0.175 0.985 0.193

100 U 0.988 0.147 0.993 0.134 0.993 0.127
Exp 0.990 0.142 0.991 0.144 0.992 0.127

10−3 20 U 0.995 0.121 1.001 0.098 1.000 0.099
Exp 0.999 0.107 0.997 0.107 0.999 0.107

50 U 0.998 0.073 0.999 0.063 1.000 0.063
Exp 1.000 0.071 0.999 0.066 0.999 0.069

100 U 0.999 0.052 1.001 0.045 1.000 0.045
Exp 1.000 0.044 1.001 0.049 1.000 0.049
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Table B.27.: Mean and standard deviation of β̂m in the counting-maximum model; based on 104 replications
(cf. Section 5.6.2) (

sj0, . . . , sj4

)
=
(
0, 4, 8, 12,∞

)
β = 1 β = 3 β = 5

ξ µ m km mean(β̂m) std(β̂m) mean(β̂m) std(β̂m) mean(β̂m) std(β̂m)

0 10−4 20 U 0.957 0.161 2.857 0.502 4.789 0.805
Exp 0.953 0.173 2.845 0.502 4.785 0.790

50 U 0.965 0.119 2.907 0.290 4.839 0.572
Exp 0.962 0.115 2.893 0.331 4.850 0.495

100 U 0.972 0.082 2.926 0.225 4.891 0.339
Exp 0.972 0.085 2.927 0.237 4.880 0.391

10−3 20 U 0.961 0.093 2.940 0.170 4.911 0.259
Exp 0.957 0.098 2.946 0.148 4.915 0.260

50 U 0.972 0.061 2.959 0.107 4.946 0.164
Exp 0.970 0.062 2.956 0.119 4.947 0.153

100 U 0.978 0.048 2.971 0.075 4.961 0.117
Exp 0.978 0.045 2.970 0.076 4.957 0.120

0.5 10−4 20 U 1.113 0.381 3.178 0.843 5.294 1.414
Exp 1.153 0.432 3.198 0.910 5.326 1.535

50 U 1.050 0.226 3.085 0.573 5.117 0.842
Exp 1.050 0.241 3.078 0.533 5.117 0.884

100 U 1.023 0.156 3.045 0.385 5.046 0.587
Exp 1.028 0.172 3.040 0.376 5.053 0.591

10−3 20 U 1.017 0.164 3.015 0.294 5.032 0.453
Exp 1.017 0.168 3.011 0.278 5.021 0.442

50 U 1.003 0.105 3.008 0.177 5.008 0.254
Exp 1.007 0.100 3.005 0.180 5.014 0.292

100 U 1.004 0.076 3.004 0.125 5.004 0.185
Exp 1.002 0.074 3.003 0.130 5.003 0.197

1 10−4 20 U 1.139 0.464 3.271 1.166 5.436 1.889
Exp 1.140 0.463 3.319 1.277 5.336 1.707

50 U 1.049 0.274 3.087 0.623 5.131 1.017
Exp 1.061 0.294 3.064 0.618 5.123 1.003

100 U 1.025 0.185 3.039 0.439 5.061 0.678
Exp 1.025 0.190 3.040 0.426 5.097 0.734

10−3 20 U 1.010 0.167 3.017 0.336 5.037 0.537
Exp 1.009 0.162 3.013 0.320 5.034 0.574

50 U 1.006 0.119 3.006 0.223 5.012 0.308
Exp 1.004 0.112 3.006 0.194 5.008 0.299

100 U 1.002 0.077 3.005 0.149 5.005 0.225
Exp 1.003 0.075 3.002 0.151 5.007 0.218



202 B. Tables

Table B.28.: Mean and standard deviation of β̂m in the counting-maximum model; based on 104 replications
(cf. Section 5.6.2) (

sj0, . . . , sj6

)
=
(
0, 2.4, 4.8, 7.2, 9.6, 12,∞

)
β = 1 β = 3 β = 5

ξ µ m km mean(β̂m) std(β̂m) mean(β̂m) std(β̂m) mean(β̂m) std(β̂m)

0 10−4 20 U 0.951 0.177 2.869 0.483 4.786 0.847
Exp 0.949 0.177 2.870 0.435 4.792 0.752

50 U 0.967 0.112 2.921 0.284 4.858 0.492
Exp 0.963 0.113 2.921 0.270 4.849 0.512

100 U 0.972 0.081 2.934 0.209 4.891 0.354
Exp 0.971 0.081 2.930 0.227 4.898 0.350

10−3 20 U 0.968 0.074 2.949 0.163 4.922 0.264
Exp 0.970 0.073 2.947 0.159 4.916 0.279

50 U 0.978 0.050 2.969 0.096 4.951 0.149
Exp 0.980 0.044 2.969 0.092 4.944 0.165

100 U 0.985 0.033 2.975 0.070 4.962 0.116
Exp 0.985 0.034 2.974 0.076 4.962 0.118

0.5 10−4 20 U 1.096 0.354 3.173 0.866 5.235 1.254
Exp 1.077 0.311 3.137 0.743 5.207 1.203

50 U 1.035 0.206 3.083 0.559 5.104 0.791
Exp 1.036 0.214 3.072 0.524 5.074 0.700

100 U 1.020 0.143 3.031 0.372 5.047 0.540
Exp 1.019 0.148 3.038 0.374 5.069 0.607

10−3 20 U 1.007 0.109 3.013 0.265 5.037 0.467
Exp 1.008 0.105 3.020 0.282 5.014 0.355

50 U 1.004 0.077 3.005 0.153 5.009 0.249
Exp 1.003 0.073 3.004 0.155 5.007 0.247

100 U 1.002 0.056 3.001 0.111 5.004 0.173
Exp 1.002 0.054 3.002 0.112 5.003 0.182

1 10−4 20 U 1.099 0.388 3.157 0.888 5.275 1.520
Exp 1.108 0.416 3.216 1.077 5.316 1.614

50 U 1.042 0.246 3.072 0.573 5.142 0.986
Exp 1.043 0.260 3.066 0.544 5.130 0.993

100 U 1.022 0.170 3.048 0.419 5.058 0.640
Exp 1.018 0.164 3.047 0.446 5.056 0.647

10−3 20 U 1.013 0.148 3.010 0.283 5.023 0.446
Exp 1.008 0.129 3.018 0.311 5.024 0.474

50 U 1.003 0.087 3.005 0.182 5.009 0.283
Exp 1.002 0.085 3.003 0.192 5.014 0.308

100 U 1.002 0.063 3.000 0.131 5.005 0.201
Exp 1.000 0.054 3.001 0.140 5.006 0.223
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Table B.29.: Optimal class limit con�guration and corresponding quantiles with regard to the generalized
Pareto distribution (cf. Section 5.5.4)

β = 1

d ξ optimal class limits
(
s11, . . . , s1,d−1

)
quantiles of class limits in %

3 0.0 (0.90, 4.38) (59.16, 98.74)
0.1 (0.86, 5.05) (56.26, 98.32)
0.2 (0.83, 5.81) (53.63, 97.88)
0.3 (0.80, 6.67) (51.24, 97.44)
0.4 (0.77, 7.65) (49.07, 96.99)
0.5 (0.75, 8.75) (47.08, 96.54)

4 0.0 (0.83, 3.17, 5.61) (56.35, 95.81, 99.64)
0.1 (0.79, 3.43, 6.89) (53.46, 94.75, 99.47)
0.2 (0.76, 3.70, 8.45) (50.91, 93.73, 99.29)
0.3 (0.74, 3.99, 10.37) (48.64, 92.76, 99.10)
0.4 (0.71, 4.31, 12.74) (46.60, 91.84, 98.91)
0.5 (0.69, 4.66, 15.65) (44.75, 90.97, 98.72)

5 0.0 (0.58, 1.54, 3.71, 6.01) (43.84, 78.51, 97.54, 99.76)
0.1 (0.54, 1.50, 4.09, 7.51) (40.90, 75.26, 96.76, 99.63)
0.2 (0.51, 1.46, 4.50, 9.38) (38.38, 72.28, 95.97, 99.49)
0.3 (0.48, 1.43, 4.95, 11.71) (36.18, 69.53, 95.18, 99.34)
0.4 (0.46, 1.40, 5.42, 14.61) (34.23, 67.00, 94.40, 99.18)
0.5 (0.43, 1.36, 5.93, 18.23) (32.51, 64.66, 93.64, 99.02)

6 0.0 (0.51, 1.29, 2.96, 4.67, 6.82) (40.08, 72.53, 94.84, 99.06, 99.89)
0.1 (0.48, 1.26, 3.15, 5.41, 8.88) (37.43, 69.34, 93.51, 98.68, 99.83)
0.2 (0.45, 1.22, 3.33, 6.26, 11.60) (35.17, 66.48, 92.23, 98.28, 99.75)
0.3 (0.43, 1.19, 3.53, 7.24, 15.18) (33.21, 63.91, 91.00, 97.86, 99.67)
0.4 (0.41, 1.17, 3.74, 8.35, 19.91) (31.49, 61.57, 89.84, 97.45, 99.58)
0.5 (0.39, 1.14, 3.96, 9.63, 26.18) (29.97, 59.44, 88.75, 97.04, 99.50)

7 0.0 (0.44, 1.06, 2.15, 3.65, 5.22, 7.31) (35.55, 65.24, 88.36, 97.40, 99.46, 99.93)
0.1 (0.41, 1.00, 2.13, 3.97, 6.18, 9.71) (32.81, 61.46, 85.47, 96.46, 99.19, 99.89)
0.2 (0.38, 0.95, 2.10, 4.29, 7.29, 12.92) (30.49, 58.12, 82.68, 95.48, 98.88, 99.83)
0.3 (0.35, 0.91, 2.07, 4.62, 8.56, 17.24) (28.51, 55.15, 80.02, 94.50, 98.56, 99.77)
0.4 (0.33, 0.87, 2.04, 4.97, 10.04, 23.02) (26.79, 52.50, 77.50, 93.53, 98.23, 99.70)
0.5 (0.31, 0.83, 2.01, 5.34, 11.76, 30.81) (25.28, 50.11, 75.13, 92.57, 97.89, 99.63)

8 0.0 (0.38, 0.88, 1.65, 2.95, 4.26, 5.74, 7.78) (31.57, 58.59, 80.82, 94.79, 98.59, 99.68, 99.96)
0.1 (0.35, 0.83, 1.61, 3.11, 4.82, 7.02, 10.63) (29.19, 55.12, 77.61, 93.33, 98.04, 99.51, 99.93)
0.2 (0.33, 0.79, 1.58, 3.27, 5.42, 8.56, 14.61) (27.20, 52.13, 74.72, 91.92, 97.46, 99.32, 99.89)
0.3 (0.31, 0.76, 1.55, 3.43, 6.10, 10.43, 20.17) (25.51, 49.51, 72.09, 90.56, 96.88, 99.12, 99.85)
0.4 (0.29, 0.73, 1.53, 3.61, 6.84, 12.71, 27.98) (24.05, 47.20, 69.68, 89.27, 96.29, 98.90, 99.81)
0.5 (0.28, 0.70, 1.51, 3.79, 7.67, 15.49, 38.99) (22.78, 45.14, 67.48, 88.05, 95.72, 98.69, 99.76)
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Table B.30.: Optimal class length Λopt and quantiles of the corresponding
class limits with regard to the generalized Pareto distribution (cf. Section 5.5.4)

β = 1

d ξ Λopt quantiles of class limits in %

3 0.0 1.76 (82.72, 97.01)
0.1 1.79 (80.75, 95.32)
0.2 1.81 (78.68, 93.44)
0.3 1.82 (76.61, 91.47)
0.4 1.83 (74.61, 89.47)
0.5 1.83 (72.68, 87.48)

4 0.0 1.45 (76.53, 94.49, 98.71)
0.1 1.49 (75.12, 92.66, 97.53)
0.2 1.51 (73.36, 90.63, 96.05)
0.3 1.52 (71.51, 88.53, 94.39)
0.4 1.53 (69.67, 86.43, 92.61)
0.5 1.53 (67.88, 84.37, 90.78)

5 0.0 1.24 (71.17, 91.69, 97.60, 99.31)
0.1 1.30 (70.42, 90.01, 96.25, 98.46)
0.2 1.32 (69.07, 88.04, 94.61, 97.29)
0.3 1.34 (67.51, 85.96, 92.82, 95.89)
0.4 1.34 (65.89, 83.88, 90.94, 94.32)
0.5 1.35 (64.27, 81.83, 89.03, 92.66)

6 0.0 1.09 (66.53, 88.80, 96.25, 98.74, 99.58)
0.1 1.15 (66.42, 87.45, 94.87, 97.75, 98.95)
0.2 1.19 (65.50, 85.64, 93.19, 96.44, 98.00)
0.3 1.20 (64.23, 83.68, 91.35, 94.92, 96.79)
0.4 1.21 (62.83, 81.67, 89.43, 93.27, 95.40)
0.5 1.22 (61.39, 79.68, 87.49, 91.54, 93.89)

7 0.0 0.98 (62.50, 85.94, 94.73, 98.02, 99.26, 99.72)
0.1 1.04 (62.98, 85.00, 93.45, 96.95, 98.50, 99.23)
0.2 1.08 (62.45, 83.44, 91.80, 95.57, 97.44, 98.44)
0.3 1.10 (61.46, 81.62, 89.97, 93.99, 96.14, 97.39)
0.4 1.12 (60.27, 79.72, 88.06, 92.28, 94.68, 96.15)
0.5 1.12 (58.99, 77.81, 86.12, 90.51, 93.10, 94.76)

8 0.0 0.89 (58.97, 83.16, 93.09, 97.17, 98.84, 99.52, 99.80)
0.1 0.96 (59.96, 82.69, 92.01, 96.11, 98.01, 98.94, 99.41)
0.2 1.00 (59.79, 81.39, 90.45, 94.70, 96.87, 98.06, 98.74)
0.3 1.02 (59.07, 79.75, 88.67, 93.09, 95.51, 96.93, 97.82)
0.4 1.04 (58.07, 77.97, 86.79, 91.36, 93.99, 95.62, 96.69)
0.5 1.05 (56.94, 76.15, 84.88, 89.57, 92.37, 94.18, 95.41)



C. Figures

Figure C.1.: Frequency distribution and normal probability plot of√
m
2

(
D̂2 − 1

)
under Poisson hypothesis with sample sizes m = 10,

50, 1000; based on 106 replications (cf. Section 5.2.1).
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Figure C.2.: Frequency distribution and normal probability plot of
√
m
2

(
D̂2−1

)
under Poisson

hypothesis with mean numbers of SOLEs per kilometer µ = 10−4, 10−3, 10−2; based on 106

replications (cf. Section 5.2.1).
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Figure C.3.: Power of the test statistic
√
m
2

(
D̂2−1

)
in % under several alternative hypotheses

(IOD > 1 and IOD < 1) for signi�cance level 1 − α = 0.95; based on 105 replications (cf.
Section 5.2.1, Table B.3, Table B.4, Table B.5, �km=U�).
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Figure C.4.: Frequency distribution and normal probability plot of
√
I% (%̂m − %) with sample

sizes m = 10, 50, 1000; based on 105 replications (cf. Section 5.3.2, uniformly distributed
mileages).



209

Figure C.5.: Frequency distribution and normal probability plot of
√
I% (%̂m − %) with expo-

nents % = 10−3, 10−4, 10−5; based on 105 replications (cf. Section 5.3.2, uniformly distributed
mileages).
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Figure C.6.: Frequency distribution and normal probability plot of
√
I% (%̂m − %) with means

µ = 10−4, 10−3, 10−2; based on 105 replications (cf. Section 5.3.2, uniformly distributed
mileages).
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Figure C.7.: Frequency distribution and normal probability plot of
√
Iµ (µ̂m − µ) with sam-

ple sizes m = 10, 50, 1000; based on 105 replications (cf. Section 5.4, uniformly distributed
mileages).
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Figure C.8.: Frequency distribution and normal probability plot of
√
Iµ (µ̂m − µ) with expo-

nents % = 10−5, 10−4, 10−3; based on 105 replications (cf. Section 5.4, uniformly distributed
mileages).
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Figure C.9.: Frequency distribution and normal probability plot of
√
Iµ (µ̂m−µ) with means

µ = 10−4, 10−3, 10−2; based on 105 replications (cf. Section 5.4, uniformly distributed
mileages).
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Figure C.10.: Relative square root of inverse Fisher information concerning %,
1

%
√
I%

= 1
%
√
Inum(%,µ)11

; based on 105 replications (cf. Section 5.3.2, Table

B.6, �km=U�).
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Figure C.11.: Relative square root of inverse Fisher information concerning µ,
1

µ
√
Iµ

= 1
µ
√
Inum(%,µ)22

; based on 105 replications (cf. Section 5.4, Table B.9,

�km=U�).
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Figure C.12.: Frequency distribution and normal probability plot of (ξ̂m−ξ)/
√
Jξ in the

counting-model with sample sizes m = 20, 50, 100; based on 105 replications (cf. Section
5.5.2, uniformly distributed mileages, (sj0, . . . , sjd) = (0, 4, 8, 12,∞)).
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Figure C.13.: Frequency distribution and normal probability plot of (ξ̂m−ξ)/
√
Jξ in the

counting-model with shapes ξ = 0.5, 1; based on 105 replications (cf. Section 5.5.2, uniformly
distributed mileages, (sj0, . . . , sjd) = (0, 4, 8, 12,∞)).
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Figure C.14.: Frequency distribution and normal probability plot of (ξ̂m−ξ)/
√
Jξ in the

counting-model with scales β = 1, 3, 5; based on 105 replications (cf. Section 5.5.2, uniformly
distributed mileages, (sj0, . . . , sjd) = (0, 4, 8, 12,∞)).
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Figure C.15.: Frequency distribution and normal probability plot of (ξ̂m−ξ)/
√
Jξ

in the counting-model with class limits (sj0, . . . , sjd) = (0, 4, 8, 12,∞),

(0, 2.4, 4.8, 7.2, 9.6, 12,∞); based on 105 replications (cf. Section 5.5.2, uniformly
distributed mileages).
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Figure C.16.: Frequency distribution and normal probability plot of (β̂m−β)/
√
Jβ in the

counting-model with sample sizes m = 20, 50, 100; based on 105 replications (cf. Section
5.5.2, uniformly distributed mileages, (sj0, . . . , sjd) = (0, 4, 8, 12,∞)).
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Figure C.17.: Frequency distribution and normal probability plot of (β̂m−β)/
√
Jβ in the

counting-model with shapes ξ = 0.5, 1; based on 105 replications (cf. Section 5.5.2, uniformly
distributed mileages, (sj0, . . . , sjd) = (0, 4, 8, 12,∞)).
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Figure C.18.: Frequency distribution and normal probability plot of (β̂m−β)/
√
Jβ in the

counting-model with scales β = 1, 3, 5; based on 105 replications (cf. Section 5.5.2, uniformly
distributed mileages, (sj0, . . . , sjd) = (0, 4, 8, 12,∞)).
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Figure C.19.: Frequency distribution and normal probability plot of (β̂m−β)/
√
Jβ

in the counting-model with class limits (sj0, . . . , sjd) = (0, 4, 8, 12,∞),

(0, 2.4, 4.8, 7.2, 9.6, 12,∞); based on 105 replications (cf. Section 5.5.2, uniformly
distributed mileages).
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Figure C.20.: Frequency distribution and cumulative distribution function of ξ̂m in the
counting-model: empirical (blue, Monte-Carlo simulation) and theoretical (green, Φξ); based

on 105 replications with ξ = 0, β = 1, µ = 10−2, m = 100, (sj0, . . . , sjd) =
(0, 2.4, 4.8, 7.2, 9.6, 12,∞), uniformly distributed mileages (cf. Section 5.5.3).
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Figure C.21.: Frequency distribution and cumulative distribution function of β̂m in the
counting-model: empirical (blue, Monte-Carlo simulation) and theoretical (green, Φβ); based

on 105 replications with ξ = 0, β = 1, µ = 10−2, m = 100, (sj0, . . . , sjd) =
(0, 2.4, 4.8, 7.2, 9.6, 12,∞), uniformly distributed mileages (cf. Section 5.5.3).
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Figure C.22.: Situation as in Figure C.21. Pictured are those realizations of β̂m where it is
ξ̂m = 0 simultaneously (blue), and the approximation of these realizations through Φβ− (green,
see Section 4.4.3) (cf. Section 5.5.3).
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Figure C.23.: Situation as in Figure C.21. Pictured are those realizations of β̂m where it is
ξ̂m > 0 simultaneously (blue), and the approximation of these realizations through Φβ+ (green,
see Section 4.4.3) (cf. Section 5.5.3).
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