Schwerpunkte/Kompetenzen
- Promotionsthema: Computing Optimal Experimental Designs using Machine Learning Methods
Sammlung der Publikationen von Philipp Seufert in der Fraunhofer-Publica
Jahr Year | Titel/Autor:in Title/Author | Publikationstyp Publication Type |
---|---|---|
2023 | Computing T-optimal designs via nested semi-infinite programming and twofold adaptive discretization Mogalle, David; Seufert, Philipp; Schwientek, Jan; Bortz, Michael; Küfer, Karl-Heinz |
Zeitschriftenaufsatz Journal Article |
2021 | Two-phase approaches to optimal model-based design of experiments: How many experiments and which ones? Vanaret, C.; Seufert, P.; Schwientek, J.; Karpov, G.; Ryzhakov, G.; Oseledets, I.; Asprion, N.; Bortz, M. |
Zeitschriftenaufsatz Journal Article |
2021 | Model-Based Design of Experiments for High-Dimensional Inputs Supported by Machine-Learning Methods Seufert, Philipp; Schwientek, Jan; Bortz, Michael |
Zeitschriftenaufsatz Journal Article |
2020 | A Two-Phase Approach for Model-Based Design of Experiments Applied in Chemical Engineering Schwientek, Jan; Vanaret, Charlie; Höller, Johannes; Schwartz, Patrick; Seufert, Philipp; Asprion, Norbert; Böttcher, Roger; Bortz, Michael |
Konferenzbeitrag Conference Paper |
2020 | Optimal design of mini-plant experiments: How to estimate model parameters reliably? Bortz, Michael; Schwientek, Jan; Seufert, Philipp; Vanaret, Charlie; Böttcher, Roger; Asprion, Norbert |
Zeitschriftenaufsatz Journal Article |